Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Broaddus, W.

  • Google
  • 2
  • 9
  • 37

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2007Wilms tumor 1 expression in malignant gliomas and correlation of +KTS isoforms with p53 statuscitations
  • 2005Association of a single nucleotide polymorphism in the matrix metalloproteinase-1 promoter with glioblastoma37citations

Places of action

Chart of shared publication
Chen, M.
1 / 8 shared
Wolber, S.
1 / 1 shared
Meter, T. Van
1 / 1 shared
Mccready, J.
2 / 2 shared
Ware, J.
1 / 1 shared
Fillmore, Helen L.
2 / 3 shared
Santos, W. Dos
1 / 1 shared
Clark, A.
1 / 3 shared
Sykes, V.
1 / 1 shared
Chart of publication period
2007
2005

Co-Authors (by relevance)

  • Chen, M.
  • Wolber, S.
  • Meter, T. Van
  • Mccready, J.
  • Ware, J.
  • Fillmore, Helen L.
  • Santos, W. Dos
  • Clark, A.
  • Sykes, V.
OrganizationsLocationPeople

article

Wilms tumor 1 expression in malignant gliomas and correlation of +KTS isoforms with p53 status

  • Chen, M.
  • Wolber, S.
  • Meter, T. Van
  • Mccready, J.
  • Broaddus, W.
  • Ware, J.
  • Fillmore, Helen L.
  • Santos, W. Dos
  • Clark, A.
Abstract

OBJECT The WT1 gene is overexpressed in many types of human cancer. It has been demonstrated that Wilms tumor 1 (WT1) promotes tumor cell proliferation and survival in some cell lines by inhibiting p53-mediated apoptosis; however, this relationship has not been investigated in gliomas. The goal in this study was to characterize the expression pattern of WT1 in human gliomas and to determine if a correlation exists between WT1 expression and p53 status.METHODS The authors screened nine malignant glioma cell lines, 50 glioblastoma multiforme (GBM) samples, and 16 lower-grade glial tumors for WT1 expression.RESULTS Five of nine cell lines, 44 of 50 GBM samples, and 13 of 16 lower-grade gliomas expressed WT1 mRNA on reverse transcriptase polymerase chain reaction (PCR) analysis. Expression of WT1 was not detected in normal astrocytes. Two WT1 isoforms, +/+ and −/+, were expressed in the majority of these samples. Real-time PCR analysis of the GBM cell lines revealed that the level of WT1 mRNA ranged from 6.33 to 214.70 ng per ng 18S ribosomal RNA. The authors screened the GBM samples for p53 mutation by using PCR and single-stranded conformational polymorphism analysis, and they demonstrated an association between WT1 expression and p53 status. Tumors that contained wild-type p53 were significantly more likely to express WT1 than tumors that contained mutant p53.CONCLUSIONS The presence of WT1 in glioma cell lines and the majority of primary tumor samples and its absence in normal astrocytes support the suggestion that WT1 expression is important in glioma biology.

Topics
  • impedance spectroscopy