People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ghorbani, Kamran
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2018Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillerscitations
- 2017Enhancing fatigue resistance and damage characterisation in adhesively-bonded composite joints by carbon nanofibrescitations
- 2017Using carbon nanofibre Sensors for in-situ detection and monitoring of disbonds in bonded composite jointscitations
- 2016A novel route for tethering graphene with iron oxide and its magnetic field alignment in polymer nanocompositescitations
- 2016Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carboncitations
- 2015Disbond monitoring of adhesive joints reinforced with carbon nanofibres
- 2015Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocompositescitations
- 2015Epoxy nanocomposites with aligned carbon nanofillers by external electric fields
- 2015Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibrescitations
Places of action
Organizations | Location | People |
---|
document
Disbond monitoring of adhesive joints reinforced with carbon nanofibres
Abstract
<p>This paper focuses on the ability of carbon nanofibre (CNF) networks for in situ monitoring of fatigue induced disbond damage in carbon fibre adhesive bonded joints. The mode I fatigue delamination behaviour of composite joints bonded with an unmodified epoxy adhesive and 0.7 wt% CNF modified epoxy adhesive are evaluated. The inclusion of CNFs in the epoxy adhesive increases its conductivity by five orders of magnitude while simultaneously retarding the delamination growth rate. The mode I critical strain energy of the CNF modified adhesive increases by about five folds from 88 J/m<sup>2</sup> to 450 J/m<sup>2</sup> under cyclic fatigue loading. The improved electrical conductivity is utilized to evaluate the ability of the CNF network to monitor and detect the fatigue induced disbond damage by in situ measuring the resistance changes using a four probe setup. The changes in total resistance was a function of the bulk electrical resistivity of the adhesive and the bond dimensions, which were related to the disbond length to model and determine the size of the disbond. Good agreement were found between the optical disbond observations and the calculated disbond length using the in situ resistance measurements, therefore proving the ability of CNFs to not only detect delamination as small as 1 mm in composite bonded joints but also retard its growth rate.</p>