People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wang, Ling
Isaac Newton Group
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Nanoarchitectonics of Nanocellulose Filament Electrodes by Femtosecond Pulse Laser Deposition of ZnO and In Situ Conjugation of Conductive Polymerscitations
- 2023Mechanistic study of dark etching regions in bearing steels due to rolling contact fatiguecitations
- 2023Mechanistic study of dark etching regions in bearing steels due to rolling contact fatiguecitations
- 2023An innovative hybrid approach for better detection of bearing faults in highly noisy environments
- 2023A study on the three key concepts of White Etching Crack failure mode in its very early stages - contrast with different testing methodscitations
- 2022Carbonate‐Induced Electrosynthesis of Hydrogen Peroxide via Two‐Electron Water Oxidationcitations
- 2022White etching bands formation mechanisms due to rolling contact fatiguecitations
- 2022White etching bands formation mechanisms due to rolling contact fatiguecitations
- 2022Electrical discharges in oil-lubricated rolling contacts and their detection using electrostatic sensing techniquecitations
- 2021Semi-empirical model for predicting LAB and HAB formation in bearing steelscitations
- 2021Semi-empirical model for predicting LAB and HAB formation in bearing steelscitations
- 2021Lignin effect in castor oil-based elastomers: Reaching new limits in rheological and cushioning behaviorscitations
- 2021Lignin effect in castor oil-based elastomers: Reaching new limits in rheological and cushioning behaviorscitations
- 2021Effective Hydrogen Peroxide Production from Electrochemical Water Oxidationcitations
- 2021A study on the initiation processes of white etching cracks (WECs) in AISI 52100 bearing steelcitations
- 2020Re-investigation of dark etching regions and white etching bands in SAE 52100 bearing steel due to rolling contact fatiguecitations
- 2020Re-investigation of dark etching regions and white etching bands in SAE 52100 bearing steel due to rolling contact fatiguecitations
- 2020Mesoporous Carbon Microfibers for Electroactive Materials Derived from Lignocellulose Nanofibrilscitations
- 2019Microcrystalline cellulose as filler in polycaprolactone matrices
- 2019Conductive Carbon Microfibers Derived from Wet-Spun Lignin/Nanocellulose Hydrogelscitations
- 2019The effect of over-based calcium sulfonate detergent additives on white etching crack (WEC) formation in rolling contact fatigue tested 100Cr6 steelcitations
- 2019Photovoltaic and antimicrobial potentials of electrodeposited copper nanoparticlecitations
- 2017Electron microscopy investigations of microstructural alterations due to classical Rolling Contact Fatigue (RCF) in martensitic AISI 52100 bearing steelcitations
- 2017Microstructural changes in White Etching Cracks (WECs) and their relationship with those in Dark Etching Region (DER) and White Etching Bands (WEBs) due to Rolling Contact Fatigue (RCF)citations
- 2017Intrinsic osteoinductivity of porous titanium scaffold for bone tissue engineeringcitations
- 2014Confirming subsurface initiation at non-metallic inclusions as one mechanism for white etching crack (WEC) formationcitations
- 2013Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF)citations
- 2013A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steelcitations
- 2013White etching crack (WEC) investigation by serial sectioning, focused ion beam and 3-D crack modellingcitations
- 2007Real-time monitoring of wear debris using electrostatic sensing techniquescitations
- 2007Pulse phase thermography (PPT): potential characterisation technology for grossly sculpted surfaces
- 2003Wear performance of oil lubricated silicon nitride sliding against various bearing steelscitations
Places of action
Organizations | Location | People |
---|
document
Pulse phase thermography (PPT): potential characterisation technology for grossly sculpted surfaces
Abstract
Surfi-Sculpt® is a novel electron beam (EB) direct writing technique invented at TWI. The process utilises an intense beam of electrons to displace material on the surface. Complex surface modifications can be produced including the manufacture of protrusions or pits ranging from a few tens of microns to several millimetres high or deep. The complex surface shapes, large angles of obliquity and overhangs of these sculpted features pose massive challenges to their surface characterisation. A review of existing rough surface characterisation techniques shows that there are no accepted methods available for such grossly textured surfaces. Thus, this paper focuses the development of new technologies to enable characterisation of EB sculpted surface features.<br/><br/>Pulse Phase Thermography (PPT) has been used to examine defects and damage in metal and composite structure [ , ]. The technology utilizes an infrared detector to record the surface temperature evolution when the specimen is being heated with a pulsed heat source like the photographic flash light. A capture in video mode up to 269 images per second, leads to the development of a time history with respect to the heat pulse. Phase data is then used as a source for quantitative analysis to enable features with different depths to be distinguished. <br/><br/>Feasibility tests of transmission and reflection modes of PPT on complex surface features of blind holes with various depths are used as groundwork for surface feature recognition and measurement. Verification of three-dimensional surface topographical results obtained by PPT will be using scanning electron microscopy (SEM) and micro computed tomography (CT).