People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stokes, K. R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2016Electrochemical detection of cupric ions with boron-doped diamond electrode for marine corrosion monitoringcitations
- 2015Electrochemical detection of cupric ions with boron-doped diamond electrode for corrosion monitoring
- 2014Estimation of organic biocide leaching rate using a modified cavity jump diffusion modelcitations
- 2013A review of the manufacture, mechanical properties and potential applications of auxetic foamscitations
- 2013Developments in electrode materials and electrolytes for aluminium-air batteriescitations
- 2010Designing biomimetic antifouling surfacescitations
- 2010Electrodeposition and tribological characterisation of nickel nanocomposite coatings reinforced with nanotubular titanatescitations
- 2007Natural products for antifouling coatings
- 2005Corrosion, erosion and erosion–corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatingscitations
- 2005The corrosion of nickel–aluminium bronze in seawater [in A Century of Tafel’s Equation: A Commemorative Issue of Corrosion Science]citations
- 2003Erosion and erosion-corrosion performance of cast and thermally sprayed nickel-aluminium bronze
- 2001Erosion of aluminum based claddings on steel by sand in watercitations
Places of action
Organizations | Location | People |
---|
document
Natural products for antifouling coatings
Abstract
Biofouling of marine structures and platforms results in both economical and environmental penalties. Current approaches to marine antifouling increasingly adopt strategies to minimise their environmental impact. One approach is to successfully mimic nature’s methods to control biological growth. A key biomimetic development for marine antifouling coatings is the isolation and use of marine natural products. Such chemicals are needed for secondary metabolic requirements of plants and animals, including defence chemicals. Recent work has focused on isolation and bioassaying techniques but few studies have trialed natural product compounds in a functional coating system. <br/> A recent project in our laboratories has used a multidisciplinary approach to develop an antifouling coating system using environmentally acceptable and naturally occurring products. A red algal natural product extract from Chondrus crispus has been evaluated as a potential antifoulant. The ethanol extract was successfully screened with a bioassay which included a range of biofouling organisms; marine bacteria, microalgae and macroalgae. The natural product extract was directly incorporated into a proprietary coating mixture to assess its activity through a realistic delivery mechanism and to test if its addition affected the coating matrix. The latter was tested in 3.5 % NaCl solutions using electrochemical impedance spectroscopy (EIS) and open-circuit potential (OCP) electrochemical techniques. <br/>The incorporation of the algal extract into the coating resulted in a slightly more negative corrosion potential of the coated mild steel by 30 mV (Ag/AgCl reference), and did not affect the impedance characteristics when compared to the control coating with no antifoulant. This suggests that the direct use of the natural product extract in the coating is an effective way to test antifouling activity for future compounds. The antifouling activity of the experimental coating was tested in seawater. Biofilm growth on the coating surfaces was examined using a bacterial viability nucleic acid stain and an episcopic differential interference contrast (EDIC) microscope. This proved to be a rapid tool for the examination of growth patterns and distribution of bacteria in-situ. Field trials were used in the Solent, England and showed a visual antifouling delay of 6 weeks in comparison to the negative control. The development of a functional antifouling coating should be possible using an aqueous phase solution such as a marine natural product.