Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Harvey, T. J.

  • Google
  • 16
  • 26
  • 811

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2019Cavitation erosion performance of CrAlYN/CrN nanoscale multilayer coatings deposited on Ti6Al4V by HIPIMS29citations
  • 2013Results of a UK industrial tribological surveycitations
  • 2013Influence of microstructure on the erosion and erosion–corrosion characteristics of 316 stainless steel66citations
  • 2012Investigation of erosion-corrosion mechanisms of UNS S31603 using FIB and TEM58citations
  • 2011A study on the evolution of surface and subsurface wear of UNS S31603 during erosion-corrosion20citations
  • 2011Electrochemical investigation of erosion-corrosion using a slurry pot erosion tester86citations
  • 2010Scuffing detection of TU3 cam–follower contacts by electrostatic charge condition monitoring32citations
  • 2009Surface potential effects on friction and abrasion of sliding contacts lubricated by aqueous solutions18citations
  • 2009Surface potential effects on friction and abrasion of sliding contacts lubricated by aqueous solutions18citations
  • 2009Advanced condition monitoring of tapered roller bearings, part145citations
  • 2009Erosion-corrosion resistance of engineering materials in various test conditions168citations
  • 2009Evaluation of a semi-empirical model in predicting erosion–corrosion62citations
  • 2007Real-time monitoring of wear debris using electrostatic sensing techniques35citations
  • 2003Wear performance of oil lubricated silicon nitride sliding against various bearing steels71citations
  • 2003Electrostatic charge monitoring of unlubricated sliding wear of a bearing steel54citations
  • 2002Use of electrostatic charge monitoring for early detection of adhesive wear in oil lubricated contacts49citations

Places of action

Chart of shared publication
Hovsepian, P. Eh
1 / 6 shared
Wood, R. J. K.
2 / 11 shared
Ehiasarian, A. P.
1 / 16 shared
Sugumaran, A. A.
1 / 1 shared
Wellman, R. G.
1 / 3 shared
Purandare, Y. P.
1 / 5 shared
Ma, D.
1 / 22 shared
Walker, J. C.
4 / 18 shared
King, Simon
1 / 4 shared
Wood, Robert J. K.
14 / 93 shared
Wang, S. C.
3 / 10 shared
Rajahram, S. S.
6 / 6 shared
Lalev, G.
1 / 5 shared
Powrie, H. E. G.
6 / 6 shared
Booth, J. E.
1 / 1 shared
Xu, Zhiqiang
1 / 2 shared
Humprheys, A.
2 / 2 shared
Wharton, Julian A.
1 / 27 shared
Ismail, M. N. F.
1 / 1 shared
Wharton, J. A.
1 / 7 shared
Masuda, K.
1 / 3 shared
Kawabata, M.
1 / 1 shared
Craig, M.
1 / 3 shared
Wang, Ling
2 / 32 shared
Morris, S.
4 / 7 shared
Care, I.
1 / 1 shared
Chart of publication period
2019
2013
2012
2011
2010
2009
2007
2003
2002

Co-Authors (by relevance)

  • Hovsepian, P. Eh
  • Wood, R. J. K.
  • Ehiasarian, A. P.
  • Sugumaran, A. A.
  • Wellman, R. G.
  • Purandare, Y. P.
  • Ma, D.
  • Walker, J. C.
  • King, Simon
  • Wood, Robert J. K.
  • Wang, S. C.
  • Rajahram, S. S.
  • Lalev, G.
  • Powrie, H. E. G.
  • Booth, J. E.
  • Xu, Zhiqiang
  • Humprheys, A.
  • Wharton, Julian A.
  • Ismail, M. N. F.
  • Wharton, J. A.
  • Masuda, K.
  • Kawabata, M.
  • Craig, M.
  • Wang, Ling
  • Morris, S.
  • Care, I.
OrganizationsLocationPeople

report

Results of a UK industrial tribological survey

  • Walker, J. C.
  • King, Simon
  • Wood, Robert J. K.
  • Harvey, T. J.
Abstract

During the summer of 2012, the National Centre for Advanced Tribology at Southampton (nCATS) undertook a UK-wide industrial tribological survey in order to assess the explicit need for tribological testing within the UK. The survey was designed and implemented by a summer intern student, Mr Simon King, under the supervision of Drs John Walker and Terry Harvey and supported by the director of nCATS, Professor Robert Wood. The survey built upon on two previous tribological surveys conducted through the National Physical Laboratory (NPL) during the 1990’s. The aim was to capture a snapshot of the current use of tribological testing within UK industry and its perceived reliability in terms of the test data generated. The survey also invited participants to speculate about how UK tribology could improve its approach to testing. The survey was distributed through the nCATS industrial contact list, which comprises of over 400 contacts from a broad spectrum of commercial industries. The Institute of Physics (IOP) tribology group also assisted by distributing the survey to its membership list. A total of 60 responses were received for the survey, out of which 39 had fully completed the questionnaire. Participants came from a broad spread of industrial backgrounds, with the energy sector having the highest representation. Only 40% of respondents were dedicated tribologists/surface engineers, again reflecting the multi-disciplinary nature of the field. It was found that the companies that had the highest annual turnover also appeared to expend the most on tribology. The majority of respondents indicated that as a percentage of turnover tribology accounted for less than 1%, however the lack of hard figures only for tribology make this a conservative estimate. The greatest concern in relation to tribology of those who responded was the cost; however the influence of legislation and product reliability were also driving factors. Abrasive wear was still considered the number one tribological wear mechanism, with sliding contacts ranking as the most common type of wear interface. Metallic and hard coated surfaces were the most commonly encountered type of material suffering from tribological wear phenomena. Laboratory scale testing was a significant part of introducing a new tribological component, however component specific testing was considered the most reliable form of testing a new component over standardised test geometries. Overall there appeared to be much potential for improving the reliability of tribological test data, with most respondents indicating that simply more testing was not the best perceived approach to improving tribological data but rather more reliable, representative tests with improved knowledge capture. Most companies possessed an internal database to assist them with tribological information; however, many also expressed a strong desire for the use of a commercial or national database, although the format this might take was less clear. Opinions appeared split as to whether there would be a collective willingness to contribute to a centralised database, presumably on the grounds on the sensitivity of data.

Topics
  • surface
  • laser emission spectroscopy
  • wood