Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Racasan, Radu

  • Google
  • 11
  • 18
  • 80

University of Huddersfield

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2020Challenges in Inspecting Internal Features for SLM Additive Manufactured Build Artifacts1citations
  • 2020The Detection of Unfused Powder in EBM and SLM Additive Manufactured Components4citations
  • 2020Development of an Additive Manufactured Artifact to Characterize Unfused Powder Using Computed Tomography6citations
  • 2019The challenges in edge detection and porosity analysis for dissimilar materials additive manufactured componentscitations
  • 2018Optimization of surface determination strategies to enhance detection of unfused powder in metal additive manufactured componentscitations
  • 2018Development of an AM artefact to characterize unfused powder using computer tomographycitations
  • 2018Characterisation of powder-filled defects in additive manufactured surfaces using X-ray CTcitations
  • 2018An interlaboratory comparison of X-ray computed tomography measurement for texture and dimensional characterisation of additively manufactured parts64citations
  • 2017Results from an interlaboratory comparison of areal surface texture parameter extraction from X-ray computed tomography of additively manufactured partscitations
  • 2017Method for characterizing defects/porosity in additive manufactured components using computer tomographycitations
  • 2016Method for Characterization of Material Loss from Modular Head-Stem Taper Surfaces of Hip Replacement Devices5citations

Places of action

Chart of shared publication
Beerlink, Andre
1 / 2 shared
Blunt, Liam
11 / 23 shared
Bills, Paul
10 / 14 shared
Tawfik, Ahmed
8 / 11 shared
Bacheva, Desi
2 / 2 shared
Radwan, Mohamed
1 / 3 shared
Attia, Mazen Ahmed
1 / 1 shared
Brown, Stephen
1 / 6 shared
Ramsey, Andrew
1 / 1 shared
Leach, Richard
1 / 9 shared
Thompson, Adam
2 / 15 shared
Senin, Nicola
2 / 11 shared
Townsend, Andrew
2 / 5 shared
Bate, David
1 / 2 shared
Woolliams, Peter
1 / 2 shared
Leach, Richard K.
1 / 12 shared
Skinner, John A.
1 / 3 shared
Hart, Alister
1 / 6 shared
Chart of publication period
2020
2019
2018
2017
2016

Co-Authors (by relevance)

  • Beerlink, Andre
  • Blunt, Liam
  • Bills, Paul
  • Tawfik, Ahmed
  • Bacheva, Desi
  • Radwan, Mohamed
  • Attia, Mazen Ahmed
  • Brown, Stephen
  • Ramsey, Andrew
  • Leach, Richard
  • Thompson, Adam
  • Senin, Nicola
  • Townsend, Andrew
  • Bate, David
  • Woolliams, Peter
  • Leach, Richard K.
  • Skinner, John A.
  • Hart, Alister
OrganizationsLocationPeople

document

Characterisation of powder-filled defects in additive manufactured surfaces using X-ray CT

  • Blunt, Liam
  • Racasan, Radu
  • Bills, Paul
  • Tawfik, Ahmed
Abstract

Assessing functional performance is the most important stage of any component verification. Mechanical properties can be evaluated by means of destructive testing which can be both expensive and lengthy in addition to loss of the original component under test. It is therefore advantageous where possible to utilise non-destructive techniques that can achieve the same or similar outcomes through collection of three-dimensional data that can then be used in simulation to determine functionality. Such non-destructive methods with 3D location ability are essentially density- and porosity-based testing methods. Additive manufacturing allows the creation of complex geometrical features that are often defined based on function.<br/>Optimisation of AM component geometry based on functionality allows for the specification of components that have features that cannot be mapped efficiently to current GPS standards ISO 14638. In addition, the integrity of complex optimised AM structures that may lie on a critical stress or heat path must be assessed and any elements of unfused powder for example, must be detected. This seeks to investigate the ability of X-ray computer tomography to detect and characterised small scale empty and powder filled defects which may occur in AM manufactured parts. To achieve this, aim a Ti6AL4V artefact built using an Arcam Q10 electron beam-melting machine (EBM). Defects of between 50 and 1400 microns in diameter were machined into the surface of the artefact using a precision CNC machine equipped with micro-drills. Once this was achieved, the defects were characterised using focus variation microscope. Virgin Ti6AL4V powder was added to fill 50% of the defects and then the artefact was measured using a Nikon XTH225 industrial CT. This was used to analyse the relative size and volume of the defects and assess the capability of the inspection process to both assess the size of pores and to detect the powder-filled defects. To reduce the number of process variables, all the measurement process parameters, such as filament current, acceleration voltage and X-ray filtering material and thickness, were kept constant between the scans with hollow and powder filled defects. The acquired data processing, surface determination process and defect analysis was carried out using VgStudio Max (Volume Graphics, Germany). The focus of the study is on providing best practice regarding the selection of inspection parameters and identifying the capability of the process to detect unfused powder.

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • simulation
  • tomography
  • porosity
  • additive manufacturing