People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Racasan, Radu
University of Huddersfield
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Challenges in Inspecting Internal Features for SLM Additive Manufactured Build Artifactscitations
- 2020The Detection of Unfused Powder in EBM and SLM Additive Manufactured Componentscitations
- 2020Development of an Additive Manufactured Artifact to Characterize Unfused Powder Using Computed Tomographycitations
- 2019The challenges in edge detection and porosity analysis for dissimilar materials additive manufactured components
- 2018Optimization of surface determination strategies to enhance detection of unfused powder in metal additive manufactured components
- 2018Development of an AM artefact to characterize unfused powder using computer tomography
- 2018Characterisation of powder-filled defects in additive manufactured surfaces using X-ray CT
- 2018An interlaboratory comparison of X-ray computed tomography measurement for texture and dimensional characterisation of additively manufactured partscitations
- 2017Results from an interlaboratory comparison of areal surface texture parameter extraction from X-ray computed tomography of additively manufactured parts
- 2017Method for characterizing defects/porosity in additive manufactured components using computer tomography
- 2016Method for Characterization of Material Loss from Modular Head-Stem Taper Surfaces of Hip Replacement Devicescitations
Places of action
Organizations | Location | People |
---|
document
Characterisation of powder-filled defects in additive manufactured surfaces using X-ray CT
Abstract
Assessing functional performance is the most important stage of any component verification. Mechanical properties can be evaluated by means of destructive testing which can be both expensive and lengthy in addition to loss of the original component under test. It is therefore advantageous where possible to utilise non-destructive techniques that can achieve the same or similar outcomes through collection of three-dimensional data that can then be used in simulation to determine functionality. Such non-destructive methods with 3D location ability are essentially density- and porosity-based testing methods. Additive manufacturing allows the creation of complex geometrical features that are often defined based on function.<br/>Optimisation of AM component geometry based on functionality allows for the specification of components that have features that cannot be mapped efficiently to current GPS standards ISO 14638. In addition, the integrity of complex optimised AM structures that may lie on a critical stress or heat path must be assessed and any elements of unfused powder for example, must be detected. This seeks to investigate the ability of X-ray computer tomography to detect and characterised small scale empty and powder filled defects which may occur in AM manufactured parts. To achieve this, aim a Ti6AL4V artefact built using an Arcam Q10 electron beam-melting machine (EBM). Defects of between 50 and 1400 microns in diameter were machined into the surface of the artefact using a precision CNC machine equipped with micro-drills. Once this was achieved, the defects were characterised using focus variation microscope. Virgin Ti6AL4V powder was added to fill 50% of the defects and then the artefact was measured using a Nikon XTH225 industrial CT. This was used to analyse the relative size and volume of the defects and assess the capability of the inspection process to both assess the size of pores and to detect the powder-filled defects. To reduce the number of process variables, all the measurement process parameters, such as filament current, acceleration voltage and X-ray filtering material and thickness, were kept constant between the scans with hollow and powder filled defects. The acquired data processing, surface determination process and defect analysis was carried out using VgStudio Max (Volume Graphics, Germany). The focus of the study is on providing best practice regarding the selection of inspection parameters and identifying the capability of the process to detect unfused powder.