Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bills, Paul

  • Google
  • 14
  • 28
  • 35

University of Huddersfield

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024Trueness of vat-photopolymerization printing technology of interim fixed partial denture with different building orientation1citations
  • 2021Comparison and appraisal of techniques for the determination of material loss from tapered orthopaedic surfaces3citations
  • 2020Challenges in Inspecting Internal Features for SLM Additive Manufactured Build Artifacts1citations
  • 2020The Detection of Unfused Powder in EBM and SLM Additive Manufactured Components4citations
  • 2020Development of an Additive Manufactured Artifact to Characterize Unfused Powder Using Computed Tomography6citations
  • 2019The challenges in edge detection and porosity analysis for dissimilar materials additive manufactured componentscitations
  • 2018Optimization of surface determination strategies to enhance detection of unfused powder in metal additive manufactured componentscitations
  • 2018Development of an AM artefact to characterize unfused powder using computer tomographycitations
  • 2018Characterisation of powder-filled defects in additive manufactured surfaces using X-ray CTcitations
  • 2017The influence of hydroalcoholic media on the performance of Grewia polysaccharide in sustained release tablets15citations
  • 2017Results from an interlaboratory comparison of areal surface texture parameter extraction from X-ray computed tomography of additively manufactured partscitations
  • 2017Method for characterizing defects/porosity in additive manufactured components using computer tomographycitations
  • 2016Method for Characterization of Material Loss from Modular Head-Stem Taper Surfaces of Hip Replacement Devices5citations
  • 2006The use of CMM techniques to assess the wear of total knee replacementscitations

Places of action

Chart of shared publication
Kusumasari, Citra
1 / 2 shared
Mahrous, Aliaa
1 / 1 shared
Blunt, Liam
12 / 23 shared
Radwan, Mohamed
2 / 3 shared
Abdou, Ahmed
1 / 4 shared
Tawfik, Ahmed
9 / 11 shared
Addinall, Katie
1 / 2 shared
Dransfield, Karl
1 / 1 shared
Beerlink, Andre
1 / 2 shared
Racasan, Radu
10 / 11 shared
Bacheva, Desi
2 / 2 shared
Attia, Mazen Ahmed
1 / 1 shared
Conway, Barbara
1 / 8 shared
Walton, Karl
1 / 5 shared
Adebisi, Dr Adeola O.
1 / 2 shared
Asare-Addo, Kofi
1 / 13 shared
Dawson, C.
1 / 1 shared
Mahdi, Mohammed
1 / 1 shared
Nep, Elijah I.
1 / 1 shared
Smith, Alan
1 / 12 shared
Leach, Richard K.
1 / 12 shared
Thompson, Adam
1 / 15 shared
Senin, Nicola
1 / 11 shared
Townsend, Andrew
1 / 5 shared
Skinner, John A.
1 / 3 shared
Hart, Alister
1 / 6 shared
Pantelis, Costas
1 / 1 shared
Hardaker, Cath
1 / 1 shared
Chart of publication period
2024
2021
2020
2019
2018
2017
2016
2006

Co-Authors (by relevance)

  • Kusumasari, Citra
  • Mahrous, Aliaa
  • Blunt, Liam
  • Radwan, Mohamed
  • Abdou, Ahmed
  • Tawfik, Ahmed
  • Addinall, Katie
  • Dransfield, Karl
  • Beerlink, Andre
  • Racasan, Radu
  • Bacheva, Desi
  • Attia, Mazen Ahmed
  • Conway, Barbara
  • Walton, Karl
  • Adebisi, Dr Adeola O.
  • Asare-Addo, Kofi
  • Dawson, C.
  • Mahdi, Mohammed
  • Nep, Elijah I.
  • Smith, Alan
  • Leach, Richard K.
  • Thompson, Adam
  • Senin, Nicola
  • Townsend, Andrew
  • Skinner, John A.
  • Hart, Alister
  • Pantelis, Costas
  • Hardaker, Cath
OrganizationsLocationPeople

booksection

The use of CMM techniques to assess the wear of total knee replacements

  • Blunt, Liam
  • Pantelis, Costas
  • Bills, Paul
  • Hardaker, Cath
Abstract

Total joint replacement is one of the most common elective surgical procedures performed worldwide, with an estimate of 1.5 million operations performed annually. Currently joint replacements are expected to function for 10-15 years, however, with an increase in life expectancy, and a greater call for knee replacement due to increased activity levels, there is a requirement to improve their function to offer longer term improved quality of life for patients. Wear analysis of total joint replacements has long been an important means in determining failure mechanisms and improving longevity of these devices. In developing such joints the industry standard and ISO wear measurement methodology is to use gravimetric methods only. The method is not as easy to apply accurately as it would first appear and can introduce significant errors to the wear measurement when there is material transfer from the metal component to the plastic component or when trying to consider the effects of fluid uptake into the ultra high molecular weight polyethylene (UHMWPE) counterface. It is also impossible to accurately measure a cemented component throughout a test by using purely gravimetric means due to similar fluid uptake and loss of cement material. As a result it is important to have an alternative measurement method that accounts for this factor. The only reasonable answer is to physically measure the component, and using co-ordinate metrology is the first, most reasonable step in this direction. The effectiveness of the CMM technique for assessing volumetric material loss during simulated life testing of a replacement knee joint has been proved previously by the authors. The purpose of this study is to establish an extension to this through the use of improved geometrical using a Zeiss Prismo CMM methods to measure component wear when there was no pre-wear data taken. To prove out the method a simulator test was run to 5 million cycles and gravimetric measurements taken throughout the test, such that the components measured had a known wear value. The wear volumes are estimated and compared against gravimetric techniques. The implications of the results are further discussed in terms of assessment of joint functionality and development of standardised CMM based product standards. In addition the results are discussed in terms of their applicability to the measurement of wear on hard on hard knee systems.

Topics
  • impedance spectroscopy
  • polymer
  • cement
  • molecular weight