People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dudziak, Tomasz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024The Process of Steam Oxidation Degradation of High Cr Steel after 125 000 Hours at 568 °C under 16.5 MPa
- 2024Microstructure Formation and Dry Reciprocating Sliding Wear Response of High-Entropy Hypereutectic White Cast Irons
- 2023Microstructure refinement of a cast high entropy alloy by thermomechanical treatmentscitations
- 2023Thermomechanical treatments for a dual phase cast high entropy alloycitations
- 2023Hot deformation mechanisms of dual phase high entropy alloyscitations
- 2021Preliminary Studies on Rare Elements Addition and Effect on Oxidation Behaviour of Pack Cementation Coatings Deposited on Variety of Steels at High Temperaturecitations
- 2021Preliminary Studies on Rare Elements Addition and Effect on Oxidation Behaviour of Pack Cementation Coatings Deposited on Variety of Steels at High Temperaturecitations
- 2020Influence of multi-layered thermal diffusion coatings on high-temperature sulfidation resistance of steels
- 2018Internal oxidation depth penetration in Ni based alloys at high temperatures
- 2018Multilayered coatings for high temperature steam oxidation: TGA studies up to 1000 oC
- 2018Steam oxidation behaviour of highly alloyed steels in pure water conditions at high temperatures,
- 2018Influence of Oxygen Partial Pressure Variation on Oxidation Resistance of Ti-46.7Al-1.9W-0.5Si at 750, 850 and 950 oC
- 2018Steam oxidation resistance and performance of newly developed coatings for Haynes® 282® Ni-based alloy
- 2017High temperature corrosion of metallic materials for coal fired power plant boiler
- 2016Impact specimen geometry on T23 and TP347HFG steels behaviour during steam oxidation at harsh conditions
- 2016Steam oxidation resistance of advanced austenitic steels with high Cr content and advanced Ni based alloys at high temperatures for A-USC coal fired power plants
- 2016Chlorine Corrosion Degradation of Low Alloyed Ferritic Steels in Temperature Range 450–550 °C
- 2016High Temperature Performance of Ferritic Steels in Fireside Corrosion Regimes
- 2015High temperature corrosion resistance of advanced engineering materials under steam oxidation conditions for Ultra Super Critical (USC) Coal Power Plants
- 2015Analysis of High Temperature Steam Oxidation of Superheater Steels Used in Coal Fired Boilers
- 2014High temperature corrosion of metallic materials in coal fired power plant boilers
- 2013Fireside corrosion degradation of ferritic alloys at 600 °C in oxy-fired conditions
- 2013Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants
- 2010High temperature corrosion studies and interdiffusion modelling in TiAl based alloys coated with high performance surface layers
- 2009Studies of the effectiveness of certain high performance coatings in preventing hot corrosion degradation of Ti - alumide alloys
- 2009Sulphidation/oxidation behaviour of TiAlCr and Al2Au coated Ti45Al8Nb alloy at 750°Ccitations
Places of action
Organizations | Location | People |
---|
article
Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants
Abstract
This article presents a systematic evaluation of coatings for advanced fossil fuel plants and addresses fireside corrosion in coal/biomass-derived flue gases. A selection of four candidate coatings: alloy 625, NiCr, FeCrAl and NiCrAlY were deposited onto superheaters/reheaters alloy (T91) using high-velocity oxy-fuel (HVOF) and plasma spraying. A series of laboratory-based fireside corrosion exposures were carried out on these coated samples in furnaces under controlled atmosphere for 1000 h at 650 °C. The tests were carried out using the “deposit-recoat” test method to simulate the environment that was anticipated from air-firing 20 wt.% cereal co-product mixed with a UK coal. The exposures were carried out using a deposit containing Na2SO4, K2SO4, and Fe2O3 to produce alkali-iron tri-sulfates, which had been identified as the principal cause of fireside corrosion on superheaters/reheaters in pulverized coal-fired power plants. The exposed samples were examined in an ESEM with EDX analysis to characterize the damage. Pre- and post-exposure dimensional metrologies were used to quantify the metal damage in terms of metal loss distributions. The thermally sprayed coatings suffered significant corrosion attack from a combination of aggressive combustion gases and deposit mixtures. In this study, all the four plasma-sprayed coatings studied performed better than the HVOF-sprayed coatings because of a lower level of porosity. NiCr was found to be the best performing coating material with a median metal loss of ~87 μm (HVOF sprayed) and ~13 μm (plasma sprayed). In general, the median metal damage for coatings had the following ranking (in the descending order: most to the least damage): NiCrAlY > alloy 625 > FeCrAl > NiCr.