People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rodriguez, Eduardo Saez
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2018Towards a new generation of glass fiber products based on regenerated fiber thermally recycled from end-of-life GRP and GRP manufacturing waste
- 2016Regenerating the strength of thermally recycled glass fibres using hot sodium hydroxidecitations
- 2016A cost-effective chemical approach to retaining and regenerating the strength of thermally recycled glass fibre
- 2015Investigation of the strength of thermally conditioned basalt and e-glass fibres
- 2015Can thermally degraded glass fibre be regenerated for closed-loop recycling of thermosetting composites?citations
- 2013Investigation of strength recovery of recycled heat treated glass fibres through chemical treatments
- 2013Regeneration of the performance of glass fibre recycled from End-of-life composites or glass fibre waste
Places of action
Organizations | Location | People |
---|
document
A cost-effective chemical approach to retaining and regenerating the strength of thermally recycled glass fibre
Abstract
<p>The purpose of this research study was to investigate the efficacy of alkaline treatments on restoring mechanical strength of thermally damaged glass fibres for potential reuse as reinforcement material. Here, E-glass fibres were heat treated in a furnace at 450°C for 25 minutes in order to simulate the harsh thermal conditions required for the recycling of glass fibre thermosetting composites. Following heat conditioning, fibres were treated with three different alkaline solutions: sodium hydroxide (NaOH), potassium hydroxide (KOH) and lithium hydroxide (LiOH). Results showed little effect of LiOH solution, however both NaOH and KOH were proved to be successful in regenerating strength of fibres heat treated at 450°C. It is believed these alkaline treatments might improve fibre strength by etching away surface defects. Factors such as concentration of alkali and treatment time were investigated in order to find optimum conditions for strength regeneration.</p>