People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barbosa, Ricardo Antonio
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Towards Extending the Range of Supplementary Cementitious Materials in ASR Regulations
- 2024Laboratory and field investigations of alkali-silica reaction prevention by supplementary cementitious materials:Influence of the free alkali loadingcitations
- 2023Pore solution alkalinity of cement paste as determined by Cold Water Extractioncitations
- 2023Pore solution alkalinity of cement paste as determined by Cold Water Extractioncitations
- 2022Predicting the effect of SCMs on ASR in the accelerated mortar bar test with artificial neural networks
- 2022Predicting the effect of SCMs on ASR in the accelerated mortar bar test with artificial neural networks
- 2022Controlling ASR in concrete by surface treatment - Field performance investigation
- 2017Influence of alkali-silica reaction on the physical, mechanical, and structural behaviour of reinforced concrete
- 2015Severe ASR damaged concrete bridges
- 2014Novel shear capacity testing of ASR damaged full scale concrete bridgecitations
- 2014Alkali-Silica Reaction in Reinforced Concrete Structures, Part II
Places of action
Organizations | Location | People |
---|
article
Severe ASR damaged concrete bridges
Abstract
Technical University of Denmark (DTU) and University of Southern Denmark (SDU) have conducted several full-scale experiments with severe ASR deteriorated bridges. This paper presents few and preliminary results from both the shear tests and the measuring of the material properties. The shear tests show that the shear capacity is almost unaffected of ASR despite significant reduction in compressive concrete strength. Furthermore, measurements show a significant tensile reinforcement strain developed due to ASR expansion.