People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bastock, P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2019Design and implementation of fiber-embedded plasmonic structures in microwires
- 2016Robust plasmonic tips fabricated by the tapering of composite hybrid silicate microfibers with metallic core
- 2015Planar-fiber nanomanufacturing
- 2015Properties of gallium lanthanum sulphide glass
- 2014Multimaterial fiber nanomanufacturing: from photodetectors to nonlinear light sources
- 2012Non-circular glass metal composite fibre
Places of action
Organizations | Location | People |
---|
conferencepaper
Planar-fiber nanomanufacturing
Abstract
Current fabrication of low-dimension functional materials (semiconductors or metallic nanowires and nanotubes) requires either resource-intensive top-down processing or hardly scalable bottom-up synthesis, which so far have hindered industrial applications and wide accessibility to such materials. Recently iterative fibre drawing techniques have been proposed as a method to fabricate arrays of nanowires. This requires multiple fibre draws to be able to realize nanoscale features but with limited choices of materials.<br/><br/>Here we demonstrate a novel method for the large-volume production of embedded nanocomposites by taking advantage of thin film properties and patterning techniques commonly used in planar fabrication and combining these with fibre drawing used in mass manufacturing of optical fibres. This hybrid process enables the realization of single and one dimensional (1D) arrays of nanostructures encased in a chosen preform material with a single fibre draw, removing the need for costly and time consuming iterative fibre drawing to achieve nanoscale features. Furthermore, this method allows an unprecedented ability to combine materials with vastly different thermal properties. As a proof of principle of the remarkable potential of this method, nanowires of Germanium Antimony Telluride (GST), which thus far have not been achieved in fibre form, as well as ultra-long gold nanowires embedded in silicate glass fibres were drawn with a single fibre draw.<br/><br/>This fabrication technique enables mass-production and ultra-long multimaterial nanocomposites embedded in fibre form, which paves the way for a range of applications in photodetectors, lasing, sensing, optoelectronics and nanophotonics, to name a few.