People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Craig, Christopher
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (37/37 displayed)
- 2023Expanding the transmission window of visible-MWIR chalcogenide glasses by silicon nitride doping
- 2022Whispering gallery mode resonances in thermally poled borosilicate glass hetero-fiberscitations
- 2021Manufacturing of GLS-Se glass rods and structured preforms by extrusion for optical fiber drawing for the IR regioncitations
- 2021Manufacturing of GLS-Se glass rods and structured preforms by extrusion for optical fiber drawing for the IR regioncitations
- 2021Whispering gallery mode resonances in thermally poled borosilicate glass optical microcavities
- 2020GLS-Se optical fibre from extruded glass structured preforms and rods for the IR regioncitations
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Erbium-doped chalcogenide glass thin film on silicon using femtosecond pulsed laser with different deposition temperaturescitations
- 2019Giant photoinduced chirality in thin film Ge2Sb2Te5citations
- 2019Fabrication of structured GLS-Se glass preforms by extrusion for fibre drawing
- 2019Radiation trapping in selected Er3+ doped chalcogenide glasses and the extraction of the nonradiative lifetimecitations
- 2019High-throughput physical vapour deposition flexible thermoelectric generatorscitations
- 2019Design and implementation of fiber-embedded plasmonic structures in microwires
- 2018Chalcogenide optical fibres based on gallium lanthanum sulphide-Se for passive and active applications
- 2018Chalcogenide optical fibres based on gallium lanthanum sulphide-Se for passive and active applications
- 2018Further studies of radiation trapping in Er3+ doped chalcogenide glassescitations
- 2018High speed chalcogenide glass electrochemical metallization cells with various active metalscitations
- 2018All-fiber plasmonic platform based on hybrid composite metal/glass microwirescitations
- 2017Structural modification of Ga-La-S glass for a new family of chalcogenidescitations
- 2017Dielectric and structural characterisation of chalcogenide glasses via terahertz time-domain spectroscopycitations
- 2017Chemical vapor deposition and Van der Waals epitaxy for wafer-scale emerging 2D transition metal di-chalcogenides
- 2017Optical, thermal, and mechanical characterization of Ga 2 Se 3 -Added GLS glasscitations
- 2017Optical, thermal, and mechanical characterization of Ga2Se3-Added GLS glasscitations
- 2017Enhancing the applications of chalcogenide glass for passive and active multispectral applications
- 2017Measurement of dn/dT and dk/dT of optical crystals, ceramics, and chalcogenide glasses between 80K and 1050K
- 2017Further studies of radiation trapping in Er3+ doped chalcogenide glasses
- 2016Next generation chalcogenide glasses for visible and IR imaging
- 2016Robust plasmonic tips fabricated by the tapering of composite hybrid silicate microfibers with metallic core
- 2016Lithography assisted fiber-drawing nanomanufacturingcitations
- 2016Ga-La-S glass for UV and IR applications
- 2015Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computingcitations
- 2015Planar-fiber nanomanufacturing
- 2015Properties of gallium lanthanum sulphide glass
- 2014Femtosecond multi-level phase switching in chalcogenide thin films for all-optical data and image processing
- 2014Multimaterial fiber nanomanufacturing: from photodetectors to nonlinear light sources
- 2014Manufacturing high purity chalcogenide glass
Places of action
Organizations | Location | People |
---|
document
Further studies of radiation trapping in Er3+ doped chalcogenide glasses
Abstract
Absorption and emission bands in trivalent erbium ions Er3+ are known to strongly overlap, which means that in heavily doped samples, it is possible to observe the effects of sequential radiation absorption and re-emission processes that involve the Er3+ ions. In particular, this effect of “radiation trapping” (RT) or “radiation/ excitation diffusion” is responsible for the dependence of the measured photoluminescence (PL) lifetime and PL spectrum shape in Er3+ chalcogenide glasses on the rare-earth doping concentration and sample size.[1,2]. It is worth mentioning here that the original name “excitation diffusion” originates from Milne’s paper where he pointed out the formal similarity of equations describing the effect with those for normal diffusion [3].In present paper we present the results of experiments which are design to maximize the effect of RT by passing the light along the bulk of a chalcogenide glass sample as shown in Figure 1 (b-d). We carry out experiments on samples having regular cylindrical shape, which allows us to do some simple calculations predicting the shape and lifetime of PL (see Equations (1-3) in Figure 1). The results of these predictions appear to be in a very good agreement with experimental data as shown in Figure 1(a). These results show that RT effectively “stirs” the excitation inside of sample, evenly distributing it throughout the whole volume of the sample.&more...