People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gibson, Iain
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2020Natural and Synthetic Hydroxyapatitescitations
- 2020Ceramics, Glasses, and Glass-Ceramicscitations
- 2011Synthesis of Bioceramic Compositions
- 2008Optimisation of the aqueous precipitation synthesis of silicatesubstituted hydroxyapatite
- 2008Optimisation of the aqueous precipitation synthesis of silicate-substituted hydroxyapatite
- 2007Comparison of Carbonate Hydroxyapatite with and without Sodium Co-Substitutioncitations
- 2007Synthesis of Novel High Silicate-Substituted Hydroxyapatite by Co-Substitution Mechanismscitations
- 2006The uptake of titanium ions by hydroxyapatite particles-structural changes and possible mechanismscitations
- 2005In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model
- 2003Calcium phosphate coatings obtained by Nd : YAG laser cladding: Physicochemical and biologic propertiescitations
- 2003Comparison of sintering and mechanical properties of hydroxyapatite and silicon-substituted hydroxyapatite
- 2002Ferroelasticity and hysteresis in LaCoO3 based perovskites
- 2002Porous glass reinforced hydroxyapatite materials produced with different organic additivescitations
- 2002Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatitescitations
- 2002Characterisation of mono- and biphasic calcium phosphates granules
- 2002Effect of silicon substitution on the sintering and microstructure of hydroxyapatite
- 2001Production of calcium phosphate coatings on Ti6Al4V obtained by Nd : yttrium-aluminum-garnet laser cladding
- 2001Effect of chemical composition on hydrophobicity and zeta potential of plasma sprayed HA/CaO-P2O5 glass coatingscitations
- 2001Effect of powder characteristics on the sinterability of hydroxyapatite powderscitations
- 2001Calcining influence on the powder properties of hydroxyapatitecitations
- 2001Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite compositescitations
- 2001Particle size effects on apatite-wollastonite glass crystallisation
- 2000Influence of phase purity on the in vivo response to hydroxyapatite
Places of action
Organizations | Location | People |
---|
article
Ferroelasticity and hysteresis in LaCoO3 based perovskites
Abstract
<p>Perovskite-type ABO, (where A = La. Ca: B = Co) ceramics are very promising materials for oxygen separation membrane and solid oxide fuel cells applications, However, their mechanical behavior has not yet been adequately studied. We studied the mechanical performance of perovskite ceramics using a combination of microindentation. compression, and bending. Our work demonstrated ferroelastic hysteretic behavior during indentation and compression loading in LaCoO3 based perovskites. This behavior can be caused by domain reorientation and/or phase transformation. Domain switching under the compression loading in LaCoO3 based perovskites has been demonstrated by XRD. Nonlinearity during fracture toughness measurements was observed in the dense La0.8Ca0.2CoO3 perovskite. Such nonlinearity can be assigned to the domain switching or the phase transformation during crack propagation. This might be a reason of a higher fracture toughness of this material compared to non-ferroelastic composition. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.</p>