People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Peyton, Antony J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Classification of Wrought and Cast Aluminium using Magnetic Induction Spectroscopy and Machine Vision
- 2023Computations and measurements of the magnetic polarizability tensor characterisation of highly conducting and magnetic objectscitations
- 2023A review of the classification of non-ferrous metals using magnetic induction for recyclingcitations
- 2023Scrap metal classification using magnetic induction spectroscopy and machine visioncitations
- 2019Classification of Non-ferrous Scrap Metal using Two Component Magnetic Induction Spectroscopy
- 2019Magnetic characterisation of grain size and precipitate distribution by major and minor BH loop measurementscitations
- 2017Classification of Non-ferrous Metals using Magnetic Induction Spectroscopycitations
- 2017Detection of creep degradation during pressure vessel testing using electromagnetic sensor technologycitations
- 2017Optimized setup and protocol for magnetic domain imaging with in Situ hysteresis measurementcitations
- 2017Electromagnetic tensor spectroscopy for sorting of shredded metallic scrapcitations
- 2017Selective recovery of metallic scraps using electromagnetic tensor spectroscopy
- 2016Defect representation using the electromagnetic tensor formulation for eddy current NDT
- 2015Electromagnetic evaluation of the microstructure of grade 91 tubes/pipescitations
- 2015Rapid Non-Contact Relative Permittivity Measurement of Fruits and Vegetables using Magnetic Induction Spectroscopycitations
- 2014Differential permeability behaviour of P9 and T22 power station Steelscitations
- 2013Magnetic sensing for microstructural assessment of power station steels: Differential permeability and magnetic hysteresiscitations
- 2006Electromagnetic visualisation of steel flow in continuous casting nozzlescitations
- 2006A three-dimensional inverse finite-element method applied to experimental eddy-current imaging datacitations
- 2003Development of a sensor for visualization of steel flow in the continuous casting nozzlecitations
Places of action
Organizations | Location | People |
---|
document
Rapid Non-Contact Relative Permittivity Measurement of Fruits and Vegetables using Magnetic Induction Spectroscopy
Abstract
The characteristic bio-impedance spectra of a biological sample can provide important information about its cellular structure, and further, infer useful information about the physical and chemical condition of the sample. In this paper, we present the background detail of a magnetic induction spectroscopy system for non-contact bio-impedance measurements, and some results using this system to obtain the relative permittivity spectra of a range of fruit and vegetable samples, over a frequency range from 160 kHz to 2.5 MHz. Relative permittivity is found to decrease with respect to frequency for each sample tested. This shows clear evidence of dispersion occurring within the samples across the investigated bandwidth.