People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Otoole, Michael D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Classification of Wrought and Cast Aluminium using Magnetic Induction Spectroscopy and Machine Vision
- 2023A review of the classification of non-ferrous metals using magnetic induction for recyclingcitations
- 2023Scrap metal classification using magnetic induction spectroscopy and machine visioncitations
- 2019Classification of Non-ferrous Scrap Metal using Two Component Magnetic Induction Spectroscopy
- 2017Classification of Non-ferrous Metals using Magnetic Induction Spectroscopycitations
- 2017Electromagnetic tensor spectroscopy for sorting of shredded metallic scrapcitations
- 2017Selective recovery of metallic scraps using electromagnetic tensor spectroscopy
- 2015Rapid Non-Contact Relative Permittivity Measurement of Fruits and Vegetables using Magnetic Induction Spectroscopycitations
Places of action
Organizations | Location | People |
---|
document
Rapid Non-Contact Relative Permittivity Measurement of Fruits and Vegetables using Magnetic Induction Spectroscopy
Abstract
The characteristic bio-impedance spectra of a biological sample can provide important information about its cellular structure, and further, infer useful information about the physical and chemical condition of the sample. In this paper, we present the background detail of a magnetic induction spectroscopy system for non-contact bio-impedance measurements, and some results using this system to obtain the relative permittivity spectra of a range of fruit and vegetable samples, over a frequency range from 160 kHz to 2.5 MHz. Relative permittivity is found to decrease with respect to frequency for each sample tested. This shows clear evidence of dispersion occurring within the samples across the investigated bandwidth.