People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cherouat, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2006Residual stress analysis in crankshaft using the hole drilling method
- 2005Determination of the residual stresses in composite laminate using the compliance method
- 2004Residual stresses in coating technology
- 2002Development of the high-precision incremental-step hole-drilling method for the study of residual stress in multi-layer materialscitations
- 2001Incremental hole drilling and X-ray diffraction techniques to the residual stresses determination introduced by shot peening in titanium alloycitations
Places of action
Organizations | Location | People |
---|
article
Residual stresses in coating technology
Abstract
Residual stress in coatings is the result of individual particle stress. Their effects may be either beneficial or detrimental, depending upon the magnitude, sign and distribution of the stresses with respect to the external load. Tensile stress which exceeds the elastic limit causes cracking in surface coatings or at the interface between the substrate and the coat. Compressive stress, in general, has a beneficial effect on the fatigue life, crack propagation, coating adhesion and on the durability of the top coat during service. Compressive residual stresses can increase the number of cycles before crack initiation begins through a mean stress effect. Temperature gradients which occur during solidification and subsequent cooling are the principal mode of internal stresses generation. Some parameters influence the residual stress field of both the coating and the substrate. Substrate nature, spraying temperature, thickness of the coat layer, substrate preparation (grit blasting conditions), and velocity of the splats are in the relation with the quality of the coating. In this work, we will describe the role playing by the ceramics coating elaboration on the residual stress gradient in depth of the component. The incremental hole drilling technique has been developed to determine the residual stress gradient in depth of the coat and substrate which must be used with particularly conditions. This new technology has been employed on zirconia, alumina and tungsten carbide plasma sprayed coating.