Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sørensen, Lasse Holst

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Fundamentals of Biomass pellet productioncitations

Places of action

Chart of shared publication
Henriksen, Ulrik Birk
1 / 13 shared
Hustad, Johan Einar
1 / 1 shared
Holm, Jens Kai
1 / 9 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Henriksen, Ulrik Birk
  • Hustad, Johan Einar
  • Holm, Jens Kai
OrganizationsLocationPeople

report

Fundamentals of Biomass pellet production

  • Henriksen, Ulrik Birk
  • Hustad, Johan Einar
  • Sørensen, Lasse Holst
  • Holm, Jens Kai
Abstract

Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass Gasification Group at MEK-DTU has been installed for experiments with different types of wood, straw, waste materials and additives such as adhesives and inorganic compounds.A series of pelletizing tests has been performed using a ring die with a compression ratio of 6.5. Pine shavings and beech wood dust has been tested individually and combined. Pine dust is relatively easy to pelletize while beech dust is almost impossible to pelletize with the present pellet mill conditions. Additionally, the inorganic part of the beech wood was rich in corrosive alkali chloride salts. With the die used it was possible to pelletize a 60% (wt) pine + 40% (wt) beech mixture but not a 40% (wt) pine + 60% (wt) beech mixture. Addition of 3% (wt) rape oil or 3% (wt) Wafolin did not facilitate the pelletizing process of beech. However, it was found that the addition of polymer-rich compounds such as brewers spent grains to the beech dust significantly facilitated the pelletizing process and increased the pellet quality. Furthermore it was found that additivation with inorganic calcium phosphorous compounds into the pellets could be easily made using realistic and necessary amounts in order to decrease the corrosiveness and the sintering ability of the ash residues.It had earlier been observed that straw could be pelletized, but that the pellet quality in general did not appear to be very high. Similar results have been obtained in the present study. The pellets were not as durable as the pine/beech pellets. Even though further tests are needed, it appears that the addition of small amounts of brewers spent grains increases the quality of the pellets. A model is presented which describes the pelletizing pressure variation along the press channels of the die. Equations based on differential control volumes are set up to describe the forces acting on the pellet in the die. Important model parameters are the sliding friction coefficient, the ratio of compression and the material specific parameters such as the elastic moduli and the Poisson's ratio. Model calculations show how variation in the characteristic parameters significantly changes the necessary pelletizing pressure. By using typical material parameters of the hardwood beech and the softwood pine it is illustrated why beech, in accordance with the experimental test results, is more difficult to pelletize than pine.

Topics
  • impedance spectroscopy
  • compound
  • polymer
  • grain
  • experiment
  • Calcium
  • durability
  • wood
  • sintering
  • gasification
  • Poisson's ratio