People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hendriks, Max
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Dynamic stiffness parameter assessment of cracked reinforced concrete beamscitations
- 2023X-ray micro-tomographic imaging and modelling of saline ice properties in concrete frost salt scaling experimentscitations
- 2022Revisiting concrete frost salt scalingcitations
- 2022An evaluation of the ice melting during concrete-ice abrasion experimentcitations
- 2022Lattice modeling and testing of aerated autoclaved concrete infilled framescitations
- 2020Inspection and assessment of corrosion in pretensioned concrete bridge girders exposed to coastal climatecitations
- 2019Topography studies of concrete abraded with icecitations
- 2018Concrete-ice abrasioncitations
- 2017Numerical modelling and seismic analysis of Dutch masonry structural components and buildings
- 2016Evaluation and improvement of calculation methods for large-scale concrete structures in service limit states
- 2012A tool for concrete performance assessment for ASR affected structures: An outlook
Places of action
Organizations | Location | People |
---|
document
Evaluation and improvement of calculation methods for large-scale concrete structures in service limit states
Abstract
<p>Concrete structures shall be designed and constructed to limit cracking and crack widths for durability, functionality and aesthetic reasons. Current design methods and requirements are, however, only in a limited manner verified for large-scale concrete structures and long service life, as well as for new binder and concrete types. To facilitate an improved design basis for large-scale reinforced concrete structures, the present project on evaluation and improvement of calculation methods for large-scale concrete structures in Service Limit State has been initiated. Initially, the occurrence of shear cracks and excessive deformations in concrete cantilever bridges has been investigated. A calculation model based on the Modified Compression Field Theory was established under the assumption that creep in principal compression direction may cause the occurrence of diagonal shear cracks in webs of the cross section. In a shear cracked state, the shear stiffness will be significantly reduced, which further results in increase of shear deformations. The calculation model was applied to, and verified on a real segmentally cast cantilever bridge: the Sålåsund Bridge with main span L = 120 m, where this type of cracking was observed.</p>