Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lippert, F.

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisationcitations

Places of action

Chart of shared publication
Knowles, Jc
1 / 23 shared
Rees, G.
1 / 5 shared
Bozec, L.
1 / 2 shared
Gracia, L.
1 / 2 shared
Lynch, Rjm
1 / 1 shared
Laurance-Young, Paul
1 / 1 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Knowles, Jc
  • Rees, G.
  • Bozec, L.
  • Gracia, L.
  • Lynch, Rjm
  • Laurance-Young, Paul
OrganizationsLocationPeople

article

A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisation

  • Knowles, Jc
  • Rees, G.
  • Bozec, L.
  • Lippert, F.
  • Gracia, L.
  • Lynch, Rjm
  • Laurance-Young, Paul
Abstract

Objectives: This review sets out to examine the suitability of bovine hard dental material in lieu of human material when investigating dental erosion, to review the evidence for the major factors popularly attributed to dental erosion: pH, pKa, acid type, erosion duration, temperature and stirring rate as well as examine the case for the use of fluoride in an anti-erosion capacity.Data sources: Published works were selected using online search software ICI Web of Knowledge and Pubmed, with key terms such as "enamel'', "erosion'' and "bovine AND human'' and cross referenced with relevant papers cited in the indices.Results: The growing trend of dental erosion, coupled to legislative changes has precipitated a recent shortage of human enamel and dentine for experimental work. This in turn has resulted in the increasing use of cheap and readily available alternate supplies being sourced. This alternate supply principally originates from beef cattle under 20 months of age, under the assumption that bovine enamel and dentine will behave in a manner similar to human material. Recent experiments attempting to compare the physicochemical properties of these two species have shown that erosion is not simply a matter of bulk tissue loss resulting from acid exposure, but a multi-factorial event encompassing ever increasing and varied complexity of the inter-relationship between solvent and substrate.Conclusions: Accurate data from the published literature regarding the comparative properties of human and bovine hard dental tissue remains scarce but consensus appears to accept the continuing use of bovine enamel as a substitute for human enamel. This lack of comparative data is further hampered by the lack of an established, standardised protocol with which to evaluate the two species. In addition, much debate remains regarding the significant principal factors responsible for dental erosion and ways to minimise the pathological manifestation. (C) 2011 Elsevier Ltd. All rights reserved.

Topics
  • impedance spectroscopy
  • experiment