People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thomason, James L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023The dependence of interfacial shear strength on temperature and matrix chemistry in glass fibre epoxy compositescitations
- 2022The influence of temperature and matrix chemistry on interfacial shear strength in glass fibre epoxy composites
- 2022Thermoset polymer scaling effects in the microbond test
- 2022Investigating the effect of silane coupling agent on glass fibre/thermoplastic interfacial adhesion
- 2020Upgrading and reuse of glass fibre recycled from end-of-life compositescitations
- 2020Micromechanical and spectroscopic characterisation of the curing performance of epoxy resins in the microbond testcitations
- 2019The amine:epoxide ratio at the interface of a glass fibre/epoxy matrix system and its influence on the interfacial shear strengthcitations
- 2019Investigation of chemical and physical surface changes of thermally conditioned glass fibrescitations
- 2019A study of the thermal degradation of glass fibre sizings at composite processing temperaturescitations
- 2018An investigation of fibre sizing on the interfacial strength of glass-fibre epoxy composites
- 2018Are silanes the primary driver of interface strength in glass fibre composites?
- 2018The influence of hardener-to-epoxy ratio on the interfacial strength in glass fibre reinforced epoxy compositescitations
- 2018Are silanes the primary driver of interface strength in glass fiber composites? An exploration of the relationship of chemical and physical parameters in the micromechanical characterisation of the apparent interfacial strength in glass fiber composites
- 2018Towards a new generation of glass fiber products based on regenerated fiber thermally recycled from end-of-life GRP and GRP manufacturing waste
- 2016Regenerating the strength of thermally recycled glass fibres using hot sodium hydroxidecitations
- 2016A cost-effective chemical approach to retaining and regenerating the strength of thermally recycled glass fibre
- 2016The role of the epoxy resin
- 2015Investigation of the strength of thermally conditioned basalt and e-glass fibres
- 2015Can thermally degraded glass fibre be regenerated for closed-loop recycling of thermosetting composites?citations
- 2015Strength of thermally conditioned glass fibre degradation, retention and regeneration
- 2015The role of the epoxy resin: Curing agent ratio in composite interfacial strength by single fibre microbond test
- 2015Investigation of the strength loss of glass fibre after thermal conditioningcitations
- 2015The role of the epoxy resin
- 2013Investigation of strength recovery of recycled heat treated glass fibres through chemical treatments
- 2013Regeneration of the performance of glass fibre recycled from End-of-life composites or glass fibre waste
- 2013Characterisation of the mechanical and thermal degradation behaviour of natural fibres for lightweight automotive applications
- 2009Analysis of the microbond test using nonlinear fracture mechanics
Places of action
Organizations | Location | People |
---|
document
An investigation of fibre sizing on the interfacial strength of glass-fibre epoxy composites
Abstract
The fibre surface coating (or sizing) is one of, if not the, most crucial components involved in the manufacture of glass-fibres and plays a key role in determining the profitability, processability and both long- and short-term performance of the ultimate composite product. Given the importance of the fibre sizing to the optimisation of the interface, where the silane is the key component for interfacial strength, there is a critical need to improve our understanding of how this region is affected by fibre sizing. This paper focuses on an investigation into the role of a number of silanes typically used in fibre sizings in determining the interfacial shear strength (IFSS) of glass-fibre epoxy composites. The microbond test was used to characterise the effect of the fibre sizing on the IFSS. The work was conducted using silane- coated bare glass-fibres, silane-only sized fibres and fully-sized commercial fibres. It was found that sizing the fibres with silane increased the IFSS (with little significant difference between silanes), more so than with the fully-sized fibres. It was however considered that this apparent increase in IFSS may in fact be as a result of increased fibre tensile strength or an artefact of residual stress and static friction.