People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zikry, Ma
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Microstructurally induced fracture nucleation and propagation in martensitic steels
Abstract
A dislocation-density grain boundary (GB) interaction scheme that is representative of dislocation-density transmission and blockage within GBs is developed and incorporated into a dislocation-density based multiple-slip crystalline plasticity framework for a detailed analysis of fracture nucleation and growth in martensitic steels. This formulation accounts for variant morphologies and orientation relationships (ORs) that are uniquely inherent to lath martensitic microstructures. Specialized finite-element (FE) methodologies using overlapping elements to represent evolving failure surfaces and microstructurally-based failure criteria for cleavage are then used to investigate the effects of martensitic variant distributions and ORs on the dominant dislocation-density mechanisms for the localization of plastic strains, and the initiation and propagation of fracture surfaces in martensitic microstructures subjected to quasi-static and dynamic strain-rates. The results indicate that the local dislocation-density behavior at the variant boundaries and the interiors influence dominant failure initiation and growth. A dislocation-density GB interaction, which is based on dislocation-density accumulation and transmission at variant boundaries, is developed and used to predict stress build-up or relaxation, and together with the orientation of the cleavage planes in relation to the lath morphology, intergranular and transgranular fracture modes can be determined.