People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barnett, Stephanie Jayne
University of Portsmouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Life cycle assessment of steel fibre-reinforced concrete beamscitations
- 2019Behaviour of hybrid steel fibre reinforced self compacting concrete using innovative hooked-end steel fibres under tensile stresscitations
- 2017Effects of steel fibre-aggregate interaction on mechanical behaviour of steel fibre reinforced concretecitations
- 2016Investigating geometrical size effect on the flexural strength of the ultra high performance fibre reinforced concrete using the cohesive crack modelcitations
- 2016Distribution and orientation of steel fibres in steel fibre reinforced concrete
- 2016Factors influencing the compressive strength of fly ash based geopolymerscitations
- 2014Modelling behaviour of ultra high performance fibre reinforced concretecitations
- 2014Numerical simulation of ultra high performance fibre reinforced concrete panels subjected to blast loadingcitations
- 2013Maturity testing of lightweight self-compacting and vibrated concretescitations
- 2011Study of fibre orientation and distribution in UHPFRC by electrical resistivity and mechanical tests
- 2010Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strengthcitations
- 2008The effect of temperature on the rate of strength development of slag cement
- 2007Fast-track construction with slag cement concrete: adiabatic strength development and strength prediction
- 2007UHPFRC - Optimisation of mix proportions
- 2006Strength development of mortars containing ground granulated blast-furnace slag: effect of curing temperature and determination of apparent activation energiescitations
- 2003Extent of immiscibility in the ettringite-thaumasite systemcitations
- 2002Study of thaumasite and ettringite phases formed in sulfate/blast furnace slag slurries using XRD full pattern fittingcitations
- 2001An XRPD profile fitting investigation of the solid solution between ettringite, Ca6Al2(SO4)3(OH)12.26H2O, and carbonate ettringite, Ca6Al2(CO3)3(OH)12.26H2Ocitations
- 2000Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12.26H2O, and thaumasite, Ca3SiSO4CO3(OH)6.12H2Ocitations
Places of action
Organizations | Location | People |
---|
document
UHPFRC - Optimisation of mix proportions
Abstract
Concrete commonly used for civil engineering construction has a compressive strength of between 30-50 MPa. High strength concretes with a compressive strength of up to 120 MPa, or even 300 MPa for special applications, have been developed but they still have a brittle failure behaviour and a poor tensile strength. Ultra high performance fibre reinforced concrete (UHPFRC) has been recently developed, with a high compressive strength (170–230 MPa) and much improved ductility and tensile properties (typically 25–60 MPa). These properties are achieved by using a high cementitious binder content, careful design of the particle packing for maximum homogeneity, elevated temperature curing and a high dosage of fine steel fibres. This paper describes a project focusing on improving and optimising the mix procedures for UHPFRC. Partial cement replacement with undensified silica fume and other cementitious materials, such as ground granulated blast furnace slag (GGBS), and pulverised fuel ash (PFA), combined with a polycarboxylate based superplasticiser has been studied to reduce the water required for workability and hence increase the compressive strength. Fresh and hardened concrete properties of UHPFRC were influenced by the excess paste volume; a 20% excess paste volume was considered to be the optimum. Flow table measurements indicated that 160 to 200mm in diameter was needed for UHPFRC to be easily compacted into moulds. Water-binder ratios as low as 0.15 are required for UHPFRC. The optimum silica fume dosage was found to be 10% by weight of binder. Up to 50% GGBS or 30% PFA can be used as a partial cement replacement without significant affecting the mechanical properties. The effect of steel fibre dosage on the compressive strength, flexural strength, fracture energy and flexural toughness has been investigated. The addition of steel fibres was found to enhance the compressive as well as the tensile strength of UHPFRC. However, the use of a fibre dosages in excess of 3.5% by volume did not improve the flexural behaviour significantly.