People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barnett, Stephanie Jayne
University of Portsmouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Life cycle assessment of steel fibre-reinforced concrete beamscitations
- 2019Behaviour of hybrid steel fibre reinforced self compacting concrete using innovative hooked-end steel fibres under tensile stresscitations
- 2017Effects of steel fibre-aggregate interaction on mechanical behaviour of steel fibre reinforced concretecitations
- 2016Investigating geometrical size effect on the flexural strength of the ultra high performance fibre reinforced concrete using the cohesive crack modelcitations
- 2016Distribution and orientation of steel fibres in steel fibre reinforced concrete
- 2016Factors influencing the compressive strength of fly ash based geopolymerscitations
- 2014Modelling behaviour of ultra high performance fibre reinforced concretecitations
- 2014Numerical simulation of ultra high performance fibre reinforced concrete panels subjected to blast loadingcitations
- 2013Maturity testing of lightweight self-compacting and vibrated concretescitations
- 2011Study of fibre orientation and distribution in UHPFRC by electrical resistivity and mechanical tests
- 2010Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strengthcitations
- 2008The effect of temperature on the rate of strength development of slag cement
- 2007Fast-track construction with slag cement concrete: adiabatic strength development and strength prediction
- 2007UHPFRC - Optimisation of mix proportions
- 2006Strength development of mortars containing ground granulated blast-furnace slag: effect of curing temperature and determination of apparent activation energiescitations
- 2003Extent of immiscibility in the ettringite-thaumasite systemcitations
- 2002Study of thaumasite and ettringite phases formed in sulfate/blast furnace slag slurries using XRD full pattern fittingcitations
- 2001An XRPD profile fitting investigation of the solid solution between ettringite, Ca6Al2(SO4)3(OH)12.26H2O, and carbonate ettringite, Ca6Al2(CO3)3(OH)12.26H2Ocitations
- 2000Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12.26H2O, and thaumasite, Ca3SiSO4CO3(OH)6.12H2Ocitations
Places of action
Organizations | Location | People |
---|
article
Fast-track construction with slag cement concrete: adiabatic strength development and strength prediction
Abstract
The early-age strength development of concrete containing slag cement has been investigated to give guidance for its use in fasttrack construction. Measurements of temperature rise under adiabatic conditions have shown that high levels of slag cement—for example, 70% of the total binder—are required to obtain a significant reduction in the peak temperature rise. Despite these<br/>temperature rises being lower than those for portland cement mixtures, however, the early-age strength under adiabatic conditions of slag cement concrete can be as high as 250% of the strength of companion cubes cured at 20 °C (68 °F). The maturity and, hence, strength development were calculated from the adiabatic temperature histories based on several maturity functions available in the literature. The predicted strength development with age was<br/>compared with the experimental results. Maturity functions that take into account the lower ultimate strengths obtained at elevated curing temperatures were found to be better at predicting the strength development.