People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oti, Jonathan
University of South Wales
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Development of low carbon concrete and prospective of geopolymer concrete using lightweight coarse aggregate and cement replacement materialscitations
- 2023Physico-Mechanical Evaluation of Geopolymer Concrete Activated by Sodium Hydroxide and Silica Fume-Synthesised Sodium Silicate Solutioncitations
- 2022Performance of sustainable road pavements founded on clay subgrades treated with eco-friendly cementitious materialscitations
- 2022Evaluation of the structural performance of low carbon concretecitations
- 2020Mechanical properties and microstructure of fibre-reinforced clay blended with by-product cementitious materialscitations
- 2016Engineering Properties of Concrete made with Brick Dust Waste
- 2015Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius
- 2015Development of stabilised brick and mortar using biomass wastecitations
- 2015The Use of Palm Kernel Shell and Ash for Concrete Production
- 2012Stabilised unfired clay bricks for environmental and sustainable usecitations
- 2012Designed non-fired clay mixes for sustainable and low carbon usecitations
- 2010Freeze-thaw of stabilised clay brickcitations
- 2010Unfired clay masonry bricks incorporating slate wastecitations
- 2010Design thermal values for unfired clay brickscitations
- 2010Engineering properties of concrete made with slate wastecitations
- 2010Sustainable masonry mortar for brick joint and plaster in the UKcitations
- 2009Engineering properties of unfired clay masonry brickscitations
- 2009Compressive strength and microstructural analysis of unfired clay masonry brickscitations
- 2009Unfired clay bricks: from laboratory to industrial productioncitations
- 2008Using Slag for Unfired-Clay Masonry-Brickscitations
- 2008Innovative Building Materials: Manufactured Bricks Using By-products of an Industrial Process
- 2008Developing unfired stabilised building materials in the UKcitations
Places of action
Organizations | Location | People |
---|
document
Engineering Properties of Concrete made with Brick Dust Waste
Abstract
This research work reports the potential of using Brick Dust Waste (BDW) as a partial substitute for Portland Cement (PC) in the development of concrete. BDW is a recycled waste materials that is sourced from the demolishing of fired clay brick buildings or the discarded by-product materials from the cutting of fired clay bricks into shape and sizes for the construction of chimneys, and other uses needing the use of fired bricks. This results in the disposal of BDW as an environmental problem of concern. BDW has pozzolanic properties that enables it play an important role in the strength and durability of concrete, its use in concrete will alleviate the increasing challenges of scarcity and high cost of cement and will help to strike a balance between the sustainability of the environment and the demand on construction due to the increase in population growth worldwide. In order to investigate the Cement replacement potential of BDW, four types of mixes were designed at varying BDW replacement levels—10%, 20%, 30% and 40% with a water binding ratio of 0.6 and tested at 7, 14, and 28 days. The testing programme included material characterisation, the determination of slump value and compressive strength