Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Green, Todd

  • Google
  • 13
  • 15
  • 90

University of Strathclyde

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2023Influence of corrosion reactions on the pulse electrodeposition of metals and alloys2citations
  • 2022Characteristics of anode materials for nickel electroforming5citations
  • 2021Pulse electrodeposition of copper in the presence of a corrosion reaction7citations
  • 2020Effect of water on the electrodeposition of copper from a deep eutectic solvent42citations
  • 2019Investigation of water absorption profile of mineral wool insulationcitations
  • 2018Anodic reactions and the corrosion of copper in deep eutectic solvents22citations
  • 2018Electrodeposition of Cu from a water-containing deep eutectic solventcitations
  • 2017Pulse plating of copper from deep eutectic solvents9citations
  • 2017Electrodeposition of copper from deep eutectic solvents by using pulse currentcitations
  • 2017Effect of water on Cu electrodeposition from ethaline based deep eutectic solventcitations
  • 2017Effect of water on Cu electrodeposition from ethaline based deep eutectic solventcitations
  • 2016Sono-electrodeposition transfer of micro-scale copper patterns on to A7 substrates using a mask-less method3citations
  • 2012Pulse Platingcitations

Places of action

Chart of shared publication
Roy, Sudipta
13 / 25 shared
Tambe, Christine Enowmbi
1 / 1 shared
Su, X.
1 / 3 shared
Valverde Armas, Priscila Estefania
4 / 5 shared
Edet, John
1 / 1 shared
Su, Xiaomeng
2 / 2 shared
Valverde, Priscila
1 / 1 shared
Serrà, Albert
1 / 7 shared
Vallés, Elisa
1 / 3 shared
Gómez, Elvira
1 / 11 shared
Coleman, Simon J.
1 / 2 shared
Vilana, Joan
1 / 1 shared
Hansal, Wolfgang E. G.
1 / 1 shared
Reichenbach, Andreas
1 / 1 shared
Leisner, Peter
1 / 8 shared
Chart of publication period
2023
2022
2021
2020
2019
2018
2017
2016
2012

Co-Authors (by relevance)

  • Roy, Sudipta
  • Tambe, Christine Enowmbi
  • Su, X.
  • Valverde Armas, Priscila Estefania
  • Edet, John
  • Su, Xiaomeng
  • Valverde, Priscila
  • Serrà, Albert
  • Vallés, Elisa
  • Gómez, Elvira
  • Coleman, Simon J.
  • Vilana, Joan
  • Hansal, Wolfgang E. G.
  • Reichenbach, Andreas
  • Leisner, Peter
OrganizationsLocationPeople

document

Electrodeposition of Cu from a water-containing deep eutectic solvent

  • Roy, Sudipta
  • Valverde Armas, Priscila Estefania
  • Green, Todd
Abstract

Ionic Liquids (ILs) have been proposed as alternatives electrolytes for metal electrodeposition. Deep Eutectic Solvents (DESs) are a novel type of ILs tolerant to water. Moreover, DESs formulated from quaternary ammonium salts and hydrogen bond donors are promising electrolytes since they are water tolerant and they are available at a reasonable cost. Although DESs are hygroscopic and absorb water from the atmosphere, earlier studies to plate Cu have concentrated on low-water containing DESs (<0.5 wt% H2O). However, for DESs to become exploitable, metal deposition from water-containing electrolytes requires to be investigated. In this work, we have endeavoured to establish a quantitative correlation that might explain the effect of water content on the electrolyte and on Cu deposition process. The intrinsic concentration of water in the electrolyte was measured using Karl Fischer titration. Thereafter, to quantify the electrolyte uptake of water a time-dependant test was conducted. After adding various concentration of water to the electrolyte determined from the time-dependant experiment (3 to 15 wt%), the influence of water content was examined with polarisation experiments collected using a rotating disc electrode. Finally, Cu deposition was carried on steel substrata from electrolytes containing different weight percentages of water. Cu deposits were characterised with Scanning Electron Microscopy (SEM) (Figure 1) and Energy Dispersive X-ray Spectroscopy (EDS).Different water contents in the electrolyte reduced the viscosity of the liquid which promotes the diffusivity of Cu2+ ions in the liquid. As a result, the limiting currents of the process increased. Higher water content changed the morphology of Cu films. Even at low water content (~3 wt%), the current distribution on the deposits is non-uniform. Furthermore, adding H2O worsens the already uneven current distribution leading to less uniform Cu deposits.

Topics
  • impedance spectroscopy
  • morphology
  • scanning electron microscopy
  • experiment
  • laser emission spectroscopy
  • steel
  • viscosity
  • Hydrogen
  • Energy-dispersive X-ray spectroscopy
  • diffusivity
  • electrodeposition
  • titration