Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bradley, T. G.

  • Google
  • 2
  • 6
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Viscoelastic properties of orthodontic adhesives used for lingual fixed retainer bonding8citations
  • 2000Degree of cure of orthodontic adhesives with various polymerization initiation modescitations

Places of action

Chart of shared publication
Eliades, T.
2 / 6 shared
Papadogiannis, D.
1 / 2 shared
Eliades, G.
2 / 10 shared
Silikas, Nikolaos
1 / 93 shared
Iliadi, A.
1 / 1 shared
Watts, Dc.
1 / 116 shared
Chart of publication period
2016
2000

Co-Authors (by relevance)

  • Eliades, T.
  • Papadogiannis, D.
  • Eliades, G.
  • Silikas, Nikolaos
  • Iliadi, A.
  • Watts, Dc.
OrganizationsLocationPeople

article

Degree of cure of orthodontic adhesives with various polymerization initiation modes

  • Eliades, T.
  • Eliades, G.
  • Bradley, T. G.
  • Watts, Dc.
Abstract

The purpose of this study was to estimate the degree of cure (DC) of a light-cured, and a two- and a one-phase (no-mix) chemically-cured, as well as a dual-cured commercially available orthodontic adhesive resin. Forty stainless steel brackets were divided into four groups of 10 brackets each, and the bracket bases were covered with a standardized volume of adhesive. They were then pressed firmly onto a yellowish background surface of 75 per cent reflectance covered with cellulose film to facilitate detachment of the system and recovery of the set material. The visible light- and dual-cured adhesives were photopolymerized by irradiation from the incisai and cervical edges of the bracket for 10 seconds each, while another group of ceramic brackets was used to assess the differential interference of transparent relative to opaque material in the DC. Micro-multiple internal reflectance Fourier transform infrared spectroscopy was employed for the estimation of the DC of the adhesives (α = 0.05, n = 10), utilizing a method proposed previously. The dual-cured product demonstrated the highest DC followed by the light-cured combined with the ceramic bracket, and the no-mix and the chemically-cured adhesives. The combination of the metallic bracket with the light-cured product resulted in a DC comparable with that of the chemically-cured material.

Topics
  • surface
  • stainless steel
  • phase
  • ceramic
  • cellulose
  • resin
  • Fourier transform infrared spectroscopy