Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kisumbi, B. K.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2000Dimensional changes of resin/ionomer restoratives in aqueous and neutral mediacitations

Places of action

Chart of shared publication
Watts, Dc.
1 / 116 shared
Toworfe, G. K.
1 / 1 shared
Chart of publication period
2000

Co-Authors (by relevance)

  • Watts, Dc.
  • Toworfe, G. K.
OrganizationsLocationPeople

article

Dimensional changes of resin/ionomer restoratives in aqueous and neutral media

  • Kisumbi, B. K.
  • Watts, Dc.
  • Toworfe, G. K.
Abstract

Objectives: The aim was to study dimensional time-dependence of resin/ionomer formulations from 5 min age to one month and to separate out the intrinsic setting shrinkage and hygroscopic expansion effects, by using non-aqueous and aqueous storage media, respectively. Methods: Materials studied included: A: resin-, B: metal- and C: polyphosphonate-modified glass-ionomer cements [GICs]; and controls of D: poly-acid modified composite [compomer]; and E: resin-composite. Separate specimen groups (n = 5) were stored in different storage-media: (i) silicone fluid; (ii) de-ionized water. Experiments were repeated at 23 and 37°C. Volumetric changes of specimens (4 mm diameter × 6 mm height) were obtained via accurate mass measurements (to 10-4 g), using Archimedes principle, with silicone or water also used as the Archimedean fluid. These measurements were made periodically over a 30 day period, post fabrication. Results: In silicone at 23°C, all materials underwent further gradual intrinsic shrinkage (after 5 min from mix). This was highly significant (p <0.05) for the RM-GIC (A). At 37°C, however the RM-GIC expanded, indicating that its cure is temperature-sensitive. In water, at 23 and 37°C, the shrinkage was either partially offset (materials C, D, E), or replaced by appreciable expansions (materials A and B). Differences between RM-GIC (A) and MM-GIC (B) were significant (p <0.05). Significance: The deployment of dual storage media made an important contribution to the separate analysis of the volumetric changes due to the on-going setting chemistry in these systems and the time-dependent effects of an aqueous environment. © 2000 Academy of Dental Materials. Published by Elsevier Science Ltd. All rights reserved.

Topics
  • impedance spectroscopy
  • experiment
  • glass
  • glass
  • composite
  • cement
  • resin