Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marouf, A. S.

  • Google
  • 2
  • 2
  • 226

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2003Photo-polymerization shrinkage-stress kinetics in resin-composites: Methods development226citations
  • 2000Optimal specimen geometry in bonded-disk shrinkage-strain measurements on light-cured biomaterialscitations

Places of action

Chart of shared publication
Al-Hindi, A. M.
1 / 1 shared
Watts, Dc.
2 / 116 shared
Chart of publication period
2003
2000

Co-Authors (by relevance)

  • Al-Hindi, A. M.
  • Watts, Dc.
OrganizationsLocationPeople

article

Optimal specimen geometry in bonded-disk shrinkage-strain measurements on light-cured biomaterials

  • Marouf, A. S.
  • Watts, Dc.
Abstract

Objectives: The aim was to determine the effect on apparent shrinkage-strain values of varying specimen aspect ratio in the bonded-disk configuration. Thereby one source of possible inter-laboratory variation might be understood and eliminated. Methods: The bonded-disk procedure was followed and applied to three representative resin-composites. However, specimen sub-groups were examined, each of different diameters (3.5, 5.0, 7.0 and 9.0 mm), corresponding to C-factors in the range 0.45-7.0. Results: For each material, no statistically significant difference was apparent between data obtained with 7 and 9 mm diameter specimens. However, statistically significant reductions (p <0.05, Scheffé and SNK) were apparent at 5.0 and 3.5 mm diameter, in the range 14-18%of the maximum 'true' value. For each material, the diameter (d)-dependence of apparent shrinkage-strain (∈) was given by the curve fit expression: ∈ = A - Bld2. Significance: For accurate determination of maximum final equilibrium shrinkage-strain values, a high aspect ratio (7-9:1) of the bonded-disk should be utilised. This is important for accurate comparison of data from proposed low-shrinkage amalgam-replacement materials. © 2000 Academy of Dental Materials. Published by Elsevier Science Ltd. All rights reserved.

Topics
  • impedance spectroscopy
  • composite
  • resin
  • biomaterials