Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Konkova, Tatyana

  • Google
  • 19
  • 44
  • 152

University of Strathclyde

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2022СВЕРХПЛАСТИЧЕСКОЕ ПОВЕДЕНИЕ АЛЮМИНИЕВОГО СПЛАВА 1420 С МЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ2citations
  • 2020Influence of laser power and powder feed rate on the microstructure evolution of laser metal deposited Ti-5553 on forged substrates28citations
  • 2020EBSD study of superplastically strained Al-Mg-Li alloy16citations
  • 2019EBSD investigation of microstructure evolution during cryogenic rolling of type 321 metastable austenitic steel13citations
  • 2019Martensite-to-austenite reversion and recrystallization in cryogenically-rolled type 321 metastable austenitic steel19citations
  • 2019Evolution of microstructure and crystallographic texture during dissimilar friction stir welding of duplex stainless steel to low carbon-manganese structural steel39citations
  • 2018Effect of deformation-induced adiabatic heating on microstructure evolution during open-die screw press forging of Ti-6Al-4V.citations
  • 2018EBSD characterization of cryogenically rolled type 321 austenitic stainless steel10citations
  • 2017EBSD анализ микроструктуры аустенитной стали после прокатки в криогенных условияхcitations
  • 2017Microstructure and residual stress in Ti-6l-4V parts made by different additive manufacturing techniquescitations
  • 2016Grain growth during annealing of cryogenically-rolled Cu-30Zn brass11citations
  • 2016Microstructure response of cryogenically-rolled Cu-30Zn brass to electric-current pulsingcitations
  • 2016Microstructure and residual stress in Ti-6l-4V parts made by different additive manufacturing techniquescitations
  • 2015A two-step approach for producing an ultrafine-grain structure in Cu-30Zn brass5citations
  • 2012Криогенная пластическая деформация технически чистой меди. Механизмы, особенности формирования структуры, стабильностьcitations
  • 2011Интенсивная пластическая деформация меди при криогенной температуреcitations
  • 2011Пластическая деформация меди при криогенной температуреcitations
  • 2007Submicrocristalline structure in copper after different severe plastic deformation schemes9citations
  • 2006Сравнительный анализ структуры и свойств бескислородной меди после различных способов интенсивной пластической деформацииcitations

Places of action

Chart of shared publication
Khalikova, Gulinara Rashidovna
1 / 1 shared
Mironov, Sergey Yurievich
1 / 1 shared
Korznikova, Galia Ferdinandovna
1 / 1 shared
Myshlyaev, Mikhail Mikhailovich
1 / 1 shared
Aletdinov, Ainur Faradatovich
1 / 1 shared
Korznikova, Elena Aleksandrovna
1 / 1 shared
Blackwell, Paul
3 / 41 shared
Hicks, C.
1 / 1 shared
Aletdinov, A.
2 / 2 shared
Korznikova, E.
1 / 1 shared
Korznikova, G.
3 / 3 shared
Khalikova, G.
1 / 1 shared
Mironov, S.
5 / 7 shared
Myshlyaev, M.
1 / 1 shared
Aletdinov, Ainur
3 / 3 shared
Semiatin, S. Lee
2 / 4 shared
Myshlyaev, Michail
3 / 3 shared
Zaripova, Rida
3 / 3 shared
Semiatin, S. L. Lee
1 / 1 shared
Myshlyaev, M. M.
2 / 3 shared
Zaripova, R. G.
1 / 1 shared
Korznikova, G. F.
1 / 3 shared
Baker, T. N.
1 / 11 shared
Rahimi, Salah
4 / 44 shared
Violatos, Ioannis
1 / 7 shared
Sivaswamy, Giribaskar
1 / 15 shared
Kulakov, Mykola
1 / 3 shared
Mironov, Sergey
5 / 7 shared
Korznikova, Galia
4 / 5 shared
Semiatin, Sheldon Lee
1 / 2 shared
Korznikov, Alexander
2 / 3 shared
Myshlyaev, Mikhail M.
1 / 1 shared
Valeev, I.
1 / 1 shared
Korznikov, A.
2 / 2 shared
Semiatin, S. L.
1 / 3 shared
Semiatin, Lee
1 / 1 shared
Myshlyaev, Mikhail
1 / 1 shared
Korznikov, Aleksandr
1 / 1 shared
Salishchev, G. A.
1 / 3 shared
Kuznetsov, A. A.
2 / 2 shared
Dobatkin, S. V.
2 / 8 shared
Reshetov, A. V.
1 / 2 shared
Synkov, A. S.
1 / 1 shared
Salischev, G. A.
1 / 1 shared
Chart of publication period
2022
2020
2019
2018
2017
2016
2015
2012
2011
2007
2006

Co-Authors (by relevance)

  • Khalikova, Gulinara Rashidovna
  • Mironov, Sergey Yurievich
  • Korznikova, Galia Ferdinandovna
  • Myshlyaev, Mikhail Mikhailovich
  • Aletdinov, Ainur Faradatovich
  • Korznikova, Elena Aleksandrovna
  • Blackwell, Paul
  • Hicks, C.
  • Aletdinov, A.
  • Korznikova, E.
  • Korznikova, G.
  • Khalikova, G.
  • Mironov, S.
  • Myshlyaev, M.
  • Aletdinov, Ainur
  • Semiatin, S. Lee
  • Myshlyaev, Michail
  • Zaripova, Rida
  • Semiatin, S. L. Lee
  • Myshlyaev, M. M.
  • Zaripova, R. G.
  • Korznikova, G. F.
  • Baker, T. N.
  • Rahimi, Salah
  • Violatos, Ioannis
  • Sivaswamy, Giribaskar
  • Kulakov, Mykola
  • Mironov, Sergey
  • Korznikova, Galia
  • Semiatin, Sheldon Lee
  • Korznikov, Alexander
  • Myshlyaev, Mikhail M.
  • Valeev, I.
  • Korznikov, A.
  • Semiatin, S. L.
  • Semiatin, Lee
  • Myshlyaev, Mikhail
  • Korznikov, Aleksandr
  • Salishchev, G. A.
  • Kuznetsov, A. A.
  • Dobatkin, S. V.
  • Reshetov, A. V.
  • Synkov, A. S.
  • Salischev, G. A.
OrganizationsLocationPeople

conferencepaper

Microstructure response of cryogenically-rolled Cu-30Zn brass to electric-current pulsing

  • Konkova, Tatyana
  • Korznikova, G.
  • Valeev, I.
  • Myshlyaev, M. M.
  • Korznikov, A.
  • Mironov, S.
  • Semiatin, S. L.
Abstract

Large deformation at cryogenic temperatures is sometimes considered as a promising and cost-effective method for the production of bulk fine-grain materials. The low deformation temperatures are believed to supress dynamic recovery and stimulate mechanical twinning, thereby enhancing grain-refinement. Such an approach may reduce the level of strain required to achieve an ultrafine microstructure and thus the use of industrial working processes to produce ultrafine-grain materials.<br/><br/>For Cu-30Zn brass, cryogenic rolling coupled with subsequent recrystallization annealing was previously shown to be a simple and effective approach for producing an ultrafine microstructure [1]. As an extension of the previous research, the present effort was undertaken to determine the specific effect of electric-current pulses (ECP) of very short duration on the microstructure developed in this material.<br/><br/>The program material was manufactured by ingot casting. The material was rolled to a 90% thickness reduction at liquid-nitrogen temperature and then pulsed at an integral current density Kj ranging from 1.29 x 104 A2smm-4 to 2.58 x 104 A2smm-4. Grain structure and texture changes were quantified using an electron backscattered diffraction (EBSD) technique.<br/><br/>The pulsing was shown to lead to recrystallization followed by grain growth. The mean grain size in the recrystallized material was 0.5 mkm, thus indicating that cryogenic rolling coupled with ECP is suitable for the production of an ultrafine-grain microstructure in Cu-30Zn brass. However, the processing window is relatively narrow, i.e., from Kj = 1.34 x 104 A2smm-4 to Kj=1.42 x 104 A2smm-4. The difference in the recrystallization texture in pulsed versus statically-annealed conditions suggested a distinct recrystallization mechanism during ECP.

Topics
  • density
  • impedance spectroscopy
  • grain
  • grain size
  • Nitrogen
  • texture
  • casting
  • annealing
  • electron backscatter diffraction
  • current density
  • recrystallization
  • grain growth
  • brass