Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Almeria, Gonzalo González

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Realistic simulation of aerodynamic loading for model testing of floating wind turbinescitations

Places of action

Chart of shared publication
Day, Alexander
1 / 4 shared
Bouchotrouch, Faisal
1 / 1 shared
Armendáriz, José Azcona
1 / 1 shared
Sánchez, Gustavo
1 / 1 shared
Lopez, Juan Amate
1 / 1 shared
Oguz, Elif
1 / 1 shared
Clelland, David
1 / 1 shared
Dai, Saishuai
1 / 2 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Day, Alexander
  • Bouchotrouch, Faisal
  • Armendáriz, José Azcona
  • Sánchez, Gustavo
  • Lopez, Juan Amate
  • Oguz, Elif
  • Clelland, David
  • Dai, Saishuai
OrganizationsLocationPeople

document

Realistic simulation of aerodynamic loading for model testing of floating wind turbines

  • Day, Alexander
  • Bouchotrouch, Faisal
  • Armendáriz, José Azcona
  • Sánchez, Gustavo
  • Lopez, Juan Amate
  • Oguz, Elif
  • Almeria, Gonzalo González
  • Clelland, David
  • Dai, Saishuai
Abstract

The simulation of wind loading for tank testing of floating wind turbines presents a variety of severe challenges. The floating platform naturally responds to wave loadings which are Froude-scaled, whilst the turbine forces respond to aerodynamic loads which are Reynolds-scaled. It is possible to account for Reynolds effects by appropriate distortion of the rotor geometry, nonetheless, construction and operation of a working scale rotor is extremely challenging due to the large size, very light weight, and complex control requirements, while relatively few wave tanks have the ability to generate suitable wind fields.<br/>Thecurrent study reviews the approaches used to simulate wind loading on floating wind turbines in wave tanks and describes the deployment of an "software in the loop" (SIL) approach in which the thrust component of the wind load is generated using a high-speed fan located on the model in line with the rotor drivetrain. The six-degree-of-freedom platform motion is measured during the tests, and the aerodynamic thrust related to the instantaneous position and velocity of the platform is calculated in real time using a modified version of the well-known FAST aero-hydro-servo-elastic software code. This calculated thrust is then used to control the fan speed to generate the physical thrust in the model test.<br/>Using this approach it is possible to explore the impact of different wind environment, rotor configurations, and control strategies without the need for a complex model of the rotor, and without generation of wind over the tank. In the present study, the approach is deployed for an innovative shallow water tension-leg platform (TLP) developed by Iberdrola.<br/>The impact of the SIL approach is compared for a variety of wind directions with results generated in two baseline conditions: the conventional case with no wind loading and a simplified case with a constant wind loading. Results are shown for the impact of the wind loading on the platform motions for free oscillation tests, and regular wave RAOs. The challenges of the approach along with the advantages and disadvantages in comparison to other methods for wind load simulation on floating wind turbines are discussed, and the scope for further improvements in the realism of wind load simulation in physical model tests of floating wind turbines is explored.

Topics
  • impedance spectroscopy
  • simulation