People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sonne, Mads S.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2020Thermo-chemical-mechanical simulation of low temperature nitriding of austenitic stainless steel; inverse modelling of surface reaction ratescitations
- 2019A Characterization Study Relating Cross-Sectional Distribution of Fiber Volume Fraction and Permeability
- 2019Numerical Modelling of Heat Transfer using the 3D-ADI-DG Method - with Application for Pultrusion.
- 2019Fiber segmentation from 3D X-ray computed tomography of composites with continuous textured glass fibre yarns
- 2018Multiphysics modelling of manufacturing processes: A reviewcitations
- 2018Numerical Modelling of Mechanical Anisotropy during Low Temperature Nitriding of Stainless Steel
- 2018Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrixcitations
- 2018Thermomechanical Modelling of Direct-Drive Friction Welding Applying a Thermal Pseudo Mechanical Model for the Generation of Heatcitations
- 2017A FEM based methodology to simulate multiple crack propagation in friction stir weldscitations
- 2017Integrated Computational Modelling of Thermochemical Surface Engineering of Stainless Steel
- 2016Improvement in Surface Characterisitcs of Polymers for Subsequent Electroless Plating Using Liquid Assisted Laser Processingcitations
- 2016Free-form nanostructured tools for plastic injection moulding
- 2016Determination of stamp deformation during imprinting on semi-spherical surfaces
- 2016Multiple Crack Growth Prediction in AA2024-T3 Friction Stir Welded Joints, Including Manufacturing Effectscitations
- 2015Defining Allowable Physical Property Variations for High Accurate Measurements on Polymer Parts.citations
- 2015Modelling residual stresses in friction stir welding of Al alloys - a review of possibilities and future trendscitations
- 2015Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shaftscitations
- 2015Modelling the residual stresses and microstructural evolution in Friction Stir Welding of AA2024-T3 including the Wagner-Kampmann precipitation model
- 2013The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3citations
Places of action
Organizations | Location | People |
---|
document
Integrated Computational Modelling of Thermochemical Surface Engineering of Stainless Steel
Abstract
An implicit finite difference method (FDM) based numerical model for the prediction of composition- and stress-depth profiles developing during low temperature gas nitriding (LTGN) of 316 stainless steel is presented. The essential effects governing the kinetics of composition and coupled stress evolution are taken into account in the model: concentration-dependent diffusion of nitrogen atoms, a slow surface reaction, elasto-plastic accommodation of lattice expansion and thermal and mechanical influences on thermodynamics (solubility) and diffusion kinetics. The model is one-dimensional and assumes a plane-stress mechanical state. Huge compressive stress levels and steep stress gradients have previously been suggested to have an influence on the concentration profile. The corresponding large plastic deformation that occurs in the developing case is addressed in the model by isotropic plasticity and force equilibrium. The model is used to explore the role and to assess the kinetics of the surface reaction.