People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vitale, Wolfgang A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Spatial variability in large area single and few-layer CVD graphene
Abstract
Variability in graphene can result from the material synthesis or post-processing steps as well as the surrounding environment. This is a critical issue for the performance of large area devices as well as for the large-scale production of micro- and nano-scale graphene devices, leading to low yield and reliability. The aim of this study is to investigate variability of single and few-layer graphene structures, on different substrates, and the effects it has on its electronic properties. We demonstrate a combination of Kelvin probe force microscopy (KPFM) and non-contact Fourier transform infrared spectroscopy (FTIR) measurements for centimeter-scale quantitative mapping of the electrical variability of large-area chemical vapor deposited graphene films. KPFM provides statistical insight into the influence of micro-scale defects on the surface potential, while FTIR gives the spatially averaged chemical potential of the graphene structures. Test structures consisting of single-, bi- and few-layer graphene on SiO2 and Al2O3 were fabricated and analyzed.