Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dams, Barrie

  • Google
  • 14
  • 44
  • 522

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024Fresh properties and autonomous deposition of pseudoplastic cementitious mortars for aerial additive manufacturing5citations
  • 2024Materials for aerial additive manufacturingcitations
  • 2023AERIAL ADDITIVE MANUFACTURING IN CONSTRUCTION USING MULTIPLE AUTONOMOUS DRONEScitations
  • 2023Development of Cementitious Mortars for Aerial Additive Manufacturing12citations
  • 2023Development and performance evaluation of fibrous pseudoplastic quaternary cement systems for aerial additive manufacturing3citations
  • 2022Aerial additive manufacturing with multiple autonomous robots153citations
  • 2022Aerial additive manufacturing with multiple autonomous robots153citations
  • 2022Aerial additive manufacturing with multiple autonomous robots153citations
  • 2022Aerial additive manufacturing with multiple autonomous robots.citations
  • 2022Integration of life cycle assessments (LCA) in circular bio-based wall panel design43citations
  • 2021Novel cementitious materials for extrusion-based 3D printingcitations
  • 2019Cement-fibre composites for additive building manufacturingcitations
  • 2018Fibrous cementitious material development for additive building manufacturing.citations
  • 2018Cementitious mortars and polyurethane foams for additive building manufacturingcitations

Places of action

Chart of shared publication
Kocer, Basaran Bahadir
5 / 6 shared
Ball, Richard J.
12 / 48 shared
Kovac, Mirko
5 / 6 shared
Chen, Binling
3 / 3 shared
Kaya, Yusuf Furkan
1 / 1 shared
Shepherd, Paul
13 / 19 shared
Orr, Lachlan
4 / 4 shared
Shea, Andrew
1 / 2 shared
Cascione, Valeria
1 / 1 shared
Maskell, Dan
1 / 2 shared
Emmitt, Stephen
1 / 2 shared
Allen, Stephen
1 / 3 shared
Walker, Pete
1 / 5 shared
Roberts, Matt
1 / 1 shared
Hei, Yiwei
1 / 1 shared
Amornrattanasereegul, Nattanon
1 / 1 shared
Lumlerdwit, Korntawat
1 / 1 shared
Peng, Jianan
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2019
2018

Co-Authors (by relevance)

  • Kocer, Basaran Bahadir
  • Ball, Richard J.
  • Kovac, Mirko
  • Chen, Binling
  • Kaya, Yusuf Furkan
  • Shepherd, Paul
  • Orr, Lachlan
  • Shea, Andrew
  • Cascione, Valeria
  • Maskell, Dan
  • Emmitt, Stephen
  • Allen, Stephen
  • Walker, Pete
  • Roberts, Matt
  • Hei, Yiwei
  • Amornrattanasereegul, Nattanon
  • Lumlerdwit, Korntawat
  • Peng, Jianan
OrganizationsLocationPeople

conferencepaper

Cementitious mortars and polyurethane foams for additive building manufacturing

  • Ball, Richard J.
  • Dams, Barrie
  • Peng, Jianan
  • Shepherd, Paul
Abstract

The use of additive manufacturing in the construction industry is still in a state of infancy. Research into suitable materials for Additive Building Manufacturing ABM) have centred upon polymeric and cementitious materials, with the trade-off between workability and buildability central to material development. This study is investigating both CEM1 based mortars and polyurethane foam to evaluate suitability for use in the construction and repair of buildings. High density polyurethane foam possesses sufficient strength and density to be a viable structural material; however, the fresh properties of the material following mixing of components present a challenge as the material exhibits lateral expansion and excessive deformation prior to curing. Microparticles were added to high density foam to investigate the provision of rigidity during curing, however the particles promoted the foaming reaction, reducing density, strength and structural viability. Mortar mixes under investigation placed the emphasis upon workability and minimisation of constituent segregation, while mindful of the material still needing to possess sufficient buildability in order to prevent excessive deformation of extruded layers while deposited material remains in a fresh state.

Topics
  • density
  • impedance spectroscopy
  • strength
  • additive manufacturing
  • curing