People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Glarborg, Peter
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2023Investigating the Interaction between Ilmenite and Zinc for Chemical Loopingcitations
- 2023Investigating the Interaction between Ilmenite and Zinc for Chemical Loopingcitations
- 2022Thermal Conversion of Sodium Phytate Using the Oxygen Carrier Ilmenite Interaction with Na-Phosphate and Its Effect on Reactivitycitations
- 2020Experimental Investigation and Mathematical Modeling of the Reaction between SO2(g) and CaCO3(s)-containing Micelles in Lube Oil for Large Two-Stroke Marine Diesel Enginescitations
- 2019Mixed Flow Reactor Experiments and Modeling of Sulfuric Acid Neutralization in Lube Oil for Large Two-Stroke Diesel Enginescitations
- 2019Mixed Flow Reactor Experiments and Modeling of Sulfuric Acid Neutralization in Lube Oil for Large Two-Stroke Diesel Enginescitations
- 2019Kinetic Parameters for Biomass under Self-Ignition Conditions: Low-Temperature Oxidation and Pyrolysiscitations
- 2018Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2018Reaction kinetics for biomass self-ignition at 150–230°C
- 2017Reaction of Sulfuric Acid in Lube Oil: Implications for Large Two-Stroke Diesel Enginescitations
- 2017Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurementscitations
- 2017Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurementscitations
- 2016Adhesion Strength of Biomass Ash Deposits
- 2016Adhesion Strength of Biomass Ash Deposits
- 2016Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2016Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2016Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements
- 2016Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements
- 2015Rate constant and thermochemistry for K + O2 + N2 = KO2 + N2citations
- 2015Rate constant and thermochemistry for K + O 2 + N 2 = KO 2 + N 2citations
- 2014Effect of pyrolysis conditions and composition on the char structure and char yield of biomass chars
- 2013Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition
- 2013Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass
- 2012Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers
- 2012Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers
- 2012Devolatilization and Combustion of Tire Rubber and Pine Wood in a Pilot Scale Rotary Kilncitations
- 2012Combustion Aerosols from Full-Scale Suspension-Firing of Wood Pellets
- 2010Oxy-fuel combustion of solid fuelscitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Effect of pyrolysis conditions and composition on the char structure and char yield of biomass chars
Abstract
The char yield as well as physical and chemical structure of chars generated from different types of biomass divided into five different particle size fractions from 50μm to 1mm were studied to better understand the influences of holding time, final temperatures and heating rates on the pyrolysis characteristics of biomass chars. An additional study of the char phase-organic transformation was conducted on the biomass organic matter. Char samples were generated in a wire-mesh reactor up to 1400°C, and with the heating rates between 10 K/s and 3000 K/s. The results were compared with the data gained from slow (10 K/min) and fast heating (600 K/min) by thermogravimetric analysis (TGA). Scanning electron microscopy (SEM/EDS), elementary analysis and Fourier transform infrared spectroscopy (FTIR) were conducted to determine the effect of operating conditions and the biomass composition on the char structural changes. A significantly different char yield was observed between heating rates 10 K/s and 1000 K/s. For heating rates > 600 K/s a similar biomass char yield was obtained. Overall, it was found that the final temperature has more influence on the char yield than the heating rate. The scanning electron microscopy indicated different types of softening and melting of the biomass chars at all applied temperatures, heating rates and holding times, except for rice husks, which formed chars with a structure similar to the parent fuel. The char particles generated at high pyrolysis temperatures had many small pores and showed complete melting, while the biomasses like wheat straw and beech wood showed larger pores and not complete melting with the remaining carbon skeleton of different forms. FTIR analysis was conducted to estimate the remaining organic composition of the char consisting mainly of hemicellulose and lignin.