People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Frandsen, Flemming Jappe
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Full-scale investigations of initial deposits formation in a cement plant co-fired with coal and SRFcitations
- 2018Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behaviorcitations
- 2018Time and temperature effects on alkali chloride induced high temperature corrosion of superheaters during biomass firingcitations
- 2018Influence of Preoxidation on High-Temperature Corrosion of a FeCrAl Alloy Under Conditions Relevant to Biomass Firingcitations
- 2017Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurementscitations
- 2017Influence of preoxidation on high temperature corrosion of a Ni-based alloy under conditions relevant to biomass firingcitations
- 2017Complementary Methods for the Characterization of Corrosion Products on a Plant-Exposed Superheater Tubecitations
- 2017Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part I: Exposures in oxidizing and chlorinating atmospherescitations
- 2017Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part II: Exposures in SO2 containing atmospherescitations
- 2016Adhesion Strength of Biomass Ash Deposits
- 2016Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements
- 2015Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firingcitations
- 2015High temperature corrosion during biomass firing: improved understanding by depth resolved characterisation of corrosion productscitations
- 2015Alkali chloride induced corrosion of superheaters under biomass firing conditions: Improved insights from laboratory scale studies
- 2014High Temperature Corrosion under Laboratory Conditions Simulating Biomass-Firing: A Comprehensive Characterization of Corrosion Productscitations
- 2014High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification
- 2013Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass
- 2012Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers
- 2012Combustion Aerosols from Full-Scale Suspension-Firing of Wood Pellets
- 2010Characterization and Quantification of Deposits Buildup and Removal in Biomass Suspension-Fired Boilers
- 2010Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler
- 2001Corrosion Investigations in Straw-Fired Power Plants in Denmark
- 2001The effect of Co-firing with Straw and Coal on High Temperature Corrosion
- 2000Deposit Formation in a 150 MWe Utility PF-Boiler during Co-combustion of Coal and Strawcitations
Places of action
Organizations | Location | People |
---|
document
Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass
Abstract
Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation in order to simulate the sulfation of KCl by ferric sulfate addition during grate-firing of biomass. The simulation results show good agreements with the experimental data obtained in a<br/>pilot-scale biomass grate-firing reactor, where different amounts of ferric sulfate was injected on the grate or into the freeboard. In addition, the simulations of elemental sulfur addition on the grate fit well with the experimental data. The results suggest that the SO3 released from ferric sulfate decomposition is the main contributor to KCl sulfation, and that the effectiveness of the ferric sulfate addition is sensitive to actual temperature in the system. When the ferric sulfate is injected on the grate, the majority of the released SO3 is rapidly converted to SO2 due to the high temperatures, resulting in a low effectiveness similar to that of elementary sulfur addition on the grate. On the other hand, when the ferric sulfate is injected into the freeboard where the temperatures<br/>are below 1050oC, the majority of the released SO3 contributes to the formation of K2SO4, leading to a high effectiveness in KCl destruction. Overall, the model developed in this work facilitates an optimal use of ferric sulfate in biomass combustion.