People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Glarborg, Peter
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2023Investigating the Interaction between Ilmenite and Zinc for Chemical Loopingcitations
- 2023Investigating the Interaction between Ilmenite and Zinc for Chemical Loopingcitations
- 2022Thermal Conversion of Sodium Phytate Using the Oxygen Carrier Ilmenite Interaction with Na-Phosphate and Its Effect on Reactivitycitations
- 2020Experimental Investigation and Mathematical Modeling of the Reaction between SO2(g) and CaCO3(s)-containing Micelles in Lube Oil for Large Two-Stroke Marine Diesel Enginescitations
- 2019Mixed Flow Reactor Experiments and Modeling of Sulfuric Acid Neutralization in Lube Oil for Large Two-Stroke Diesel Enginescitations
- 2019Mixed Flow Reactor Experiments and Modeling of Sulfuric Acid Neutralization in Lube Oil for Large Two-Stroke Diesel Enginescitations
- 2019Kinetic Parameters for Biomass under Self-Ignition Conditions: Low-Temperature Oxidation and Pyrolysiscitations
- 2018Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2018Reaction kinetics for biomass self-ignition at 150–230°C
- 2017Reaction of Sulfuric Acid in Lube Oil: Implications for Large Two-Stroke Diesel Enginescitations
- 2017Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurementscitations
- 2017Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurementscitations
- 2016Adhesion Strength of Biomass Ash Deposits
- 2016Adhesion Strength of Biomass Ash Deposits
- 2016Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2016Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2016Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements
- 2016Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements
- 2015Rate constant and thermochemistry for K + O2 + N2 = KO2 + N2citations
- 2015Rate constant and thermochemistry for K + O 2 + N 2 = KO 2 + N 2citations
- 2014Effect of pyrolysis conditions and composition on the char structure and char yield of biomass chars
- 2013Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition
- 2013Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass
- 2012Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers
- 2012Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers
- 2012Devolatilization and Combustion of Tire Rubber and Pine Wood in a Pilot Scale Rotary Kilncitations
- 2012Combustion Aerosols from Full-Scale Suspension-Firing of Wood Pellets
- 2010Oxy-fuel combustion of solid fuelscitations
Places of action
Organizations | Location | People |
---|
document
Combustion Aerosols from Full-Scale Suspension-Firing of Wood Pellets
Abstract
The objectives of the present work were to investigate the aerosol formation mechanisms during full-scale suspension firing of wood, and, to evaluate the effect of coal fly ash addition on the formation of aerosols under different ash load conditions. Tests with suspension firing of 100 % wood pellets, with and without injection of coal fly ash as additive, were carried out at the 800 MWth multifuel boiler at Avedøre Power Plant. An extractive sampling system consisting of a gas ejector-diluter connected to a 10-stage Berner type low pressure cascade impactor (aerodynamic diameter range of 0.03 – 12.7 μm) was used to sample aerosols in the flue gas, in the top of the boiler before the SCR (Tfluegas ~350 oC). The collected aerosols were subsequently characterized with respect to particle size distribution, morphology, and chemical composition. The mass-based size distribution of the aerosols revealed that the formation of submicron particles was<br/>increased significantly when no coal ash was injected, as compared to the reference experiments with addition of coal fly ash. PM1 for the experiments without coal ash addition was in the range 44 – 47 mg/Nm3, while it was only 11 – 19 mg/Nm3 for the experiments with coal fly ash addition. This indicates that the coal fly ash is effective in capturing volatile alkalis released from the wood during combustion, thus suppressing the homogeneous nucleation of alkali-salts. SEM/EDS and TEM/EDS analysis revealed that the large condensation peak from pure wood combustion (without coal ash addition)<br/>consisted primarily of irregularly shaped aggregates rich in K, Cl and S (probably KCl and K2SO4). The addition of coal fly ash mainly affected the submicron aerosols in two ways: the relative amount of spherical particles originated from molten minerals was increased; and the composition of the aggregates was changed from K-Cl-S rich to Ca-PSi rich. In conclusion, the results confirm that coal fly ash is effective in capturing gaseous K, presumably by incorporating gaseous K into solid potassium-aluminumsilicates, thereby reducing significantly the amount of submicron aerosols formed from homogeneous nucleation, coagulation and condensation of KCl and K2SO4. A potential for optimizing the coal fly ash concentration exists.