People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Frandsen, Flemming Jappe
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Full-scale investigations of initial deposits formation in a cement plant co-fired with coal and SRFcitations
- 2018Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behaviorcitations
- 2018Time and temperature effects on alkali chloride induced high temperature corrosion of superheaters during biomass firingcitations
- 2018Influence of Preoxidation on High-Temperature Corrosion of a FeCrAl Alloy Under Conditions Relevant to Biomass Firingcitations
- 2017Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurementscitations
- 2017Influence of preoxidation on high temperature corrosion of a Ni-based alloy under conditions relevant to biomass firingcitations
- 2017Complementary Methods for the Characterization of Corrosion Products on a Plant-Exposed Superheater Tubecitations
- 2017Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part I: Exposures in oxidizing and chlorinating atmospherescitations
- 2017Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part II: Exposures in SO2 containing atmospherescitations
- 2016Adhesion Strength of Biomass Ash Deposits
- 2016Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements
- 2015Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firingcitations
- 2015High temperature corrosion during biomass firing: improved understanding by depth resolved characterisation of corrosion productscitations
- 2015Alkali chloride induced corrosion of superheaters under biomass firing conditions: Improved insights from laboratory scale studies
- 2014High Temperature Corrosion under Laboratory Conditions Simulating Biomass-Firing: A Comprehensive Characterization of Corrosion Productscitations
- 2014High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification
- 2013Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass
- 2012Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers
- 2012Combustion Aerosols from Full-Scale Suspension-Firing of Wood Pellets
- 2010Characterization and Quantification of Deposits Buildup and Removal in Biomass Suspension-Fired Boilers
- 2010Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler
- 2001Corrosion Investigations in Straw-Fired Power Plants in Denmark
- 2001The effect of Co-firing with Straw and Coal on High Temperature Corrosion
- 2000Deposit Formation in a 150 MWe Utility PF-Boiler during Co-combustion of Coal and Strawcitations
Places of action
Organizations | Location | People |
---|
document
Combustion Aerosols from Full-Scale Suspension-Firing of Wood Pellets
Abstract
The objectives of the present work were to investigate the aerosol formation mechanisms during full-scale suspension firing of wood, and, to evaluate the effect of coal fly ash addition on the formation of aerosols under different ash load conditions. Tests with suspension firing of 100 % wood pellets, with and without injection of coal fly ash as additive, were carried out at the 800 MWth multifuel boiler at Avedøre Power Plant. An extractive sampling system consisting of a gas ejector-diluter connected to a 10-stage Berner type low pressure cascade impactor (aerodynamic diameter range of 0.03 – 12.7 μm) was used to sample aerosols in the flue gas, in the top of the boiler before the SCR (Tfluegas ~350 oC). The collected aerosols were subsequently characterized with respect to particle size distribution, morphology, and chemical composition. The mass-based size distribution of the aerosols revealed that the formation of submicron particles was<br/>increased significantly when no coal ash was injected, as compared to the reference experiments with addition of coal fly ash. PM1 for the experiments without coal ash addition was in the range 44 – 47 mg/Nm3, while it was only 11 – 19 mg/Nm3 for the experiments with coal fly ash addition. This indicates that the coal fly ash is effective in capturing volatile alkalis released from the wood during combustion, thus suppressing the homogeneous nucleation of alkali-salts. SEM/EDS and TEM/EDS analysis revealed that the large condensation peak from pure wood combustion (without coal ash addition)<br/>consisted primarily of irregularly shaped aggregates rich in K, Cl and S (probably KCl and K2SO4). The addition of coal fly ash mainly affected the submicron aerosols in two ways: the relative amount of spherical particles originated from molten minerals was increased; and the composition of the aggregates was changed from K-Cl-S rich to Ca-PSi rich. In conclusion, the results confirm that coal fly ash is effective in capturing gaseous K, presumably by incorporating gaseous K into solid potassium-aluminumsilicates, thereby reducing significantly the amount of submicron aerosols formed from homogeneous nucleation, coagulation and condensation of KCl and K2SO4. A potential for optimizing the coal fly ash concentration exists.