People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ibraim, Erdin
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024An evaluation of non-linear undrained behaviour in the moderate strain range for fine-grained soilscitations
- 2024Comparison of simple stress-strain models in the moderate strain range for fine-grained soils:A reviewcitations
- 2024Comparison of simple stress-strain models in the moderate strain range for fine-grained soilscitations
- 2021Stiffness of granular soils under long-term multiaxial cyclic loadingcitations
- 20213D FE-informed laboratory soil testing for the design of offshore wind turbine monopilescitations
- 2021Stiffness of artificially cemented sands:insight on characterisation through empirical power relationshipscitations
- 2021Stiffness of artificially cemented sandscitations
- 2019Strength anisotropy of fibre-reinforced sands under multiaxial loadingcitations
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2018Compacted Chalk Putty-Cement Blends:Mechanical Properties and Performancecitations
- 2018Compacted Chalk Putty-Cement Blendscitations
- 2017General Report:
- 2017Particle soil crushing: passive detection and interpretation
- 2017Evolution of elastic properties of granular soils under very large of number of multiaxial stress cycles
- 2016Evolution of small strain stiffness of granular soils with a large number of small loading cycles in the 3-D multiaxial stress space
- 2015Quantitative assessment of the influence of surface roughness on soil stiffnesscitations
- 2014Micromechanics of seismic wave propagation in granular materialscitations
- 2013Experimental and numerical assessment of a cubical sample produced by pluviationcitations
- 2012Characterization of artificial spherical particles for DEM validation studiescitations
- 2012Characterization of artificial spherical particles for DEM validation studiescitations
- 2012Characterization of artificial, spherical sized particles for DEM validation studies ; Characterization of artificial spherical particles for DEM validation studiescitations
- 2010Static liquefaction of fibre reinforced sand under monotonic loadingcitations
- 2009Failure resistant soils for geotechnical infrastructure
Places of action
Organizations | Location | People |
---|
document
Particle soil crushing: passive detection and interpretation
Abstract
Soil grain crushing has a significant influence on the performance of the geotechnical systems. However, the mechanics<br/>of particle breakage remains one of the most difficult problems in geomechanics. For a bulk of soil grains under loading, one of the<br/>ongoing challenges is the prediction of the extent of soil particle crushing and its evolution. While the main goal of a wider research is<br/>to investigate the possibility of using Acoustic Emission (AE) technique to characterise the extent and evolution of soil grain<br/>crushing, this paper particularly focuses on individual grains under uniaxial compression loading. Insight into the use of AE to<br/>characterize the crushing mechanism and signature is gained through testing of individual particles of chalk. For one particle, it<br/>appears that the frequency content of the AE recorded signals does not seem to be affected by a particular crushing mechanism,<br/>limited fragmentation or critical failure. However, the discrimination between these two mechanisms is given through inspection of<br/>the corresponding waveforms and evaluation of parameters like maximum amplitude and energy. Similar size particles also appear to<br/>provide good repeatability with similar frequency contents for both crushing mechanisms.