Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chen, Xiaohui

  • Google
  • 22
  • 39
  • 185

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (22/22 displayed)

  • 2022Effect of sandblasting with fluorapatite glass-ceramic powder and chemical primers/adhesives on shear bond strength of indirect repairing composite to zirconia7citations
  • 2020Fluorapatite Glass-Ceramics: A New Sandblasting Approach for Zirconia Repaircitations
  • 2019Preliminary study of hydroxyapatite particles air abrasive blasting on Mg-4Zn-0.3Ca surface1citations
  • 2016Design and Synthesis of New Translucent, High Strength Leucite Glass-Ceramicscitations
  • 2016Surface properties of tricalcium phosphate and hydroxyapatite resin compositescitations
  • 2014Leucite Glass Ceramicscitations
  • 2014The Retarding Effect of Zinc Oxide on Dissolution and Apatite Formation of a Fluoride Containing Bioactive Glasscitations
  • 2014'Smart' acid-degradable zinc-releasing silicate glasses37citations
  • 2014Low-sodium Bioactive Glass Coatings for Titanium Implants by Grit Blastingcitations
  • 2013Remineralisation Study of a Nano-sized Hydroxyapatite and Fluoride Containing Toothpastecitations
  • 2013Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics24citations
  • 2013Crystallization of high-strength nano-scale leucite glass-ceramics30citations
  • 2012Wear characteristics of fine and nano-scale high-strength leucite glass-ceramicscitations
  • 2011Crystallization and flexural strength optimization of fine-grained leucite glass-ceramics for dentistry58citations
  • 2010Development and testing of multi-phase glazes for adhesive bonding to zirconia substratescitations
  • 2010Crystallization of high-strength fine-sized leucite glass-ceramics28citations
  • 2010Synthesis of nano-sized Leucite Glass-ceramicscitations
  • 2010Wear Characteristics of an Experimental High-Strength Fine-Sized Leucite Glass-Ceramiccitations
  • 2010Optimization of Novel Leucite Glass-ceramicscitations
  • 2009Effect of Glass Powder Size on Leucite Glass-Ceramic Crystallisationcitations
  • 2009Control of ceramic microstructurecitations
  • 2007Microstructure and Thermal Expansion Properties of Some Leucite Glass-Ceramicscitations

Places of action

Chart of shared publication
Silikas, Nikolaos
3 / 93 shared
Elraggal, Alaaeldin
2 / 5 shared
Seli, Hazman
1 / 1 shared
Thomas, Andrew G.
1 / 28 shared
Theocharopoulos, Antonios
4 / 4 shared
Almuhamadi, Jamelia
1 / 1 shared
Cattell, Mike
3 / 3 shared
Karpukhina, Natalia
2 / 8 shared
Hill, Robert
4 / 7 shared
Watts, Dc.
1 / 116 shared
Salah-Ud-Din, Rabia
1 / 1 shared
Thecharopoulos, Antonios
1 / 1 shared
Hill, R. G.
2 / 3 shared
Mneimne, M.
1 / 1 shared
Karpukhina, N.
3 / 5 shared
Shah, P.
1 / 2 shared
Mckay, I. J.
1 / 2 shared
Waite, R. D.
1 / 1 shared
Barry, M.
1 / 1 shared
Brauer, D. S.
1 / 9 shared
Al-Ani, M. D.
1 / 1 shared
Hill, Robert G.
5 / 16 shared
Hill, R.
5 / 7 shared
Gillam, D.
1 / 1 shared
Bernholt, R.
1 / 1 shared
Cattell, Michael J.
3 / 4 shared
Cattell, M. J.
2 / 3 shared
Theocharopoulos, A.
2 / 2 shared
Wilson, R. M.
2 / 4 shared
Chadwick, Thomas C.
2 / 2 shared
Wilson, Rory M.
1 / 3 shared
Ntala, Polyxeni
1 / 1 shared
Cattell, Michael
1 / 1 shared
Niggli, Jason
1 / 1 shared
Chadwick, T. C.
1 / 1 shared
Cattell, Mike J.
3 / 3 shared
Cattell, M.
2 / 2 shared
Riodel, Jacques V.
1 / 1 shared
Ibsen, Robert
1 / 1 shared
Chart of publication period
2022
2020
2019
2016
2014
2013
2012
2011
2010
2009
2007

Co-Authors (by relevance)

  • Silikas, Nikolaos
  • Elraggal, Alaaeldin
  • Seli, Hazman
  • Thomas, Andrew G.
  • Theocharopoulos, Antonios
  • Almuhamadi, Jamelia
  • Cattell, Mike
  • Karpukhina, Natalia
  • Hill, Robert
  • Watts, Dc.
  • Salah-Ud-Din, Rabia
  • Thecharopoulos, Antonios
  • Hill, R. G.
  • Mneimne, M.
  • Karpukhina, N.
  • Shah, P.
  • Mckay, I. J.
  • Waite, R. D.
  • Barry, M.
  • Brauer, D. S.
  • Al-Ani, M. D.
  • Hill, Robert G.
  • Hill, R.
  • Gillam, D.
  • Bernholt, R.
  • Cattell, Michael J.
  • Cattell, M. J.
  • Theocharopoulos, A.
  • Wilson, R. M.
  • Chadwick, Thomas C.
  • Wilson, Rory M.
  • Ntala, Polyxeni
  • Cattell, Michael
  • Niggli, Jason
  • Chadwick, T. C.
  • Cattell, Mike J.
  • Cattell, M.
  • Riodel, Jacques V.
  • Ibsen, Robert
OrganizationsLocationPeople

conferencepaper

Wear Characteristics of an Experimental High-Strength Fine-Sized Leucite Glass-Ceramic

  • Theocharopoulos, A.
  • Hill, R.
  • Cattell, M.
  • Chen, Xiaohui
Abstract

Objectives: To test the wear characteristics of an experimental high-strength fine-sized leucite glass-ceramic against human enamel. Methods: A wear testing protocol was adapted on an MTS-Bionix-858 system. Human enamel pins were wear tested against disc samples (n=12) of a commercial control (Ceramco-3, Dentsply) and an experimental fine-grained leucite glass-ceramic. Specimens were loaded (13.5N) followed by a lateral excursion movement and a controlled cuspal contact time (0.25s) to complete a cycle for 300,000 simulated masticatory cycles at 2Hz under continuous flow of deionised water (37C). Wear quantification (volume/ mean-height loss) was performed by superimposition of digitised test surfaces before and after wear testing by non-contact 3D profilometry (Proscan-2000, Scantron) and the dedicated software using a novel protocol. Glass-ceramic disc/ tooth specimen groups were statistically compared (Mann-Whitney, p<0.05). Wear tested specimens were examined using SEM and Profilometry. Indicative surface roughness (Ra)/ waviness measurements (500 x,y line scans/ specimen) were also performed on a glass-ceramic disc/ tooth pair per group. Results: Volume and mean-height loss results are listed below. A patterned wear profile with distinct parallel grooves was identified for the Ceramco-3 group versus the non-oriented wear profile of the experimental group. All recorded Ra and wave-height values for the experimental disc/ tooth group were lower than the Ceramco-3 group. Categories Ceramco-3 glass-ceramic Experimental glass-ceramic Volume loss(mm3) (Discs) 0.164(0.158,0.217)a 0.190(0.154,0.214)a Volume loss(mm3) (Teeth) 0.208(0.127,0.252)a 0.133(0.110,0.151)b Mean-Height loss(μm) (Discs) 61.8(55.2,72.0)a 67.9(60.0,72.5)a Mean-Height loss(μm) (Teeth) 88.3(69.8,103.0)a 65.7(56.0,77.5)b *Values represent medians (25%,75%percentiles). Different superscript letters indicate significant (p<0.05) differences between groups within categories. Conclusions: The experimental glass-ceramic exhibited significantly ...

Topics
  • surface
  • scanning electron microscopy
  • glass
  • glass
  • strength
  • ceramic
  • profilometry