Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chen, Xiaohui

  • Google
  • 22
  • 39
  • 185

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (22/22 displayed)

  • 2022Effect of sandblasting with fluorapatite glass-ceramic powder and chemical primers/adhesives on shear bond strength of indirect repairing composite to zirconia7citations
  • 2020Fluorapatite Glass-Ceramics: A New Sandblasting Approach for Zirconia Repaircitations
  • 2019Preliminary study of hydroxyapatite particles air abrasive blasting on Mg-4Zn-0.3Ca surface1citations
  • 2016Design and Synthesis of New Translucent, High Strength Leucite Glass-Ceramicscitations
  • 2016Surface properties of tricalcium phosphate and hydroxyapatite resin compositescitations
  • 2014Leucite Glass Ceramicscitations
  • 2014The Retarding Effect of Zinc Oxide on Dissolution and Apatite Formation of a Fluoride Containing Bioactive Glasscitations
  • 2014'Smart' acid-degradable zinc-releasing silicate glasses37citations
  • 2014Low-sodium Bioactive Glass Coatings for Titanium Implants by Grit Blastingcitations
  • 2013Remineralisation Study of a Nano-sized Hydroxyapatite and Fluoride Containing Toothpastecitations
  • 2013Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics24citations
  • 2013Crystallization of high-strength nano-scale leucite glass-ceramics30citations
  • 2012Wear characteristics of fine and nano-scale high-strength leucite glass-ceramicscitations
  • 2011Crystallization and flexural strength optimization of fine-grained leucite glass-ceramics for dentistry58citations
  • 2010Development and testing of multi-phase glazes for adhesive bonding to zirconia substratescitations
  • 2010Crystallization of high-strength fine-sized leucite glass-ceramics28citations
  • 2010Synthesis of nano-sized Leucite Glass-ceramicscitations
  • 2010Wear Characteristics of an Experimental High-Strength Fine-Sized Leucite Glass-Ceramiccitations
  • 2010Optimization of Novel Leucite Glass-ceramicscitations
  • 2009Effect of Glass Powder Size on Leucite Glass-Ceramic Crystallisationcitations
  • 2009Control of ceramic microstructurecitations
  • 2007Microstructure and Thermal Expansion Properties of Some Leucite Glass-Ceramicscitations

Places of action

Chart of shared publication
Silikas, Nikolaos
3 / 93 shared
Elraggal, Alaaeldin
2 / 5 shared
Seli, Hazman
1 / 1 shared
Thomas, Andrew G.
1 / 28 shared
Theocharopoulos, Antonios
4 / 4 shared
Almuhamadi, Jamelia
1 / 1 shared
Cattell, Mike
3 / 3 shared
Karpukhina, Natalia
2 / 8 shared
Hill, Robert
4 / 7 shared
Watts, Dc.
1 / 116 shared
Salah-Ud-Din, Rabia
1 / 1 shared
Thecharopoulos, Antonios
1 / 1 shared
Hill, R. G.
2 / 3 shared
Mneimne, M.
1 / 1 shared
Karpukhina, N.
3 / 5 shared
Shah, P.
1 / 2 shared
Mckay, I. J.
1 / 2 shared
Waite, R. D.
1 / 1 shared
Barry, M.
1 / 1 shared
Brauer, D. S.
1 / 9 shared
Al-Ani, M. D.
1 / 1 shared
Hill, Robert G.
5 / 16 shared
Hill, R.
5 / 7 shared
Gillam, D.
1 / 1 shared
Bernholt, R.
1 / 1 shared
Cattell, Michael J.
3 / 4 shared
Cattell, M. J.
2 / 3 shared
Theocharopoulos, A.
2 / 2 shared
Wilson, R. M.
2 / 4 shared
Chadwick, Thomas C.
2 / 2 shared
Wilson, Rory M.
1 / 3 shared
Ntala, Polyxeni
1 / 1 shared
Cattell, Michael
1 / 1 shared
Niggli, Jason
1 / 1 shared
Chadwick, T. C.
1 / 1 shared
Cattell, Mike J.
3 / 3 shared
Cattell, M.
2 / 2 shared
Riodel, Jacques V.
1 / 1 shared
Ibsen, Robert
1 / 1 shared
Chart of publication period
2022
2020
2019
2016
2014
2013
2012
2011
2010
2009
2007

Co-Authors (by relevance)

  • Silikas, Nikolaos
  • Elraggal, Alaaeldin
  • Seli, Hazman
  • Thomas, Andrew G.
  • Theocharopoulos, Antonios
  • Almuhamadi, Jamelia
  • Cattell, Mike
  • Karpukhina, Natalia
  • Hill, Robert
  • Watts, Dc.
  • Salah-Ud-Din, Rabia
  • Thecharopoulos, Antonios
  • Hill, R. G.
  • Mneimne, M.
  • Karpukhina, N.
  • Shah, P.
  • Mckay, I. J.
  • Waite, R. D.
  • Barry, M.
  • Brauer, D. S.
  • Al-Ani, M. D.
  • Hill, Robert G.
  • Hill, R.
  • Gillam, D.
  • Bernholt, R.
  • Cattell, Michael J.
  • Cattell, M. J.
  • Theocharopoulos, A.
  • Wilson, R. M.
  • Chadwick, Thomas C.
  • Wilson, Rory M.
  • Ntala, Polyxeni
  • Cattell, Michael
  • Niggli, Jason
  • Chadwick, T. C.
  • Cattell, Mike J.
  • Cattell, M.
  • Riodel, Jacques V.
  • Ibsen, Robert
OrganizationsLocationPeople

conferencepaper

Optimization of Novel Leucite Glass-ceramics

  • Hill, R.
  • Cattell, M.
  • Chen, Xiaohui
Abstract

Objectives: The aims of the study were to optimize the crystallization and heat extrusion of novel leucite glass-ceramics.Methods: Glass was designed, synthesized and attritor milled into powders. The glass powder A was characterised using Differential Scanning Calorimetry and High Temperature X-ray Diffraction (HTXRD). Nucleation and crystal growth experiments were carried out to optimize two-step crystallization heat treatments. The crystallized phases were identified using room temperature X-ray Diffraction and the microstructures were viewed using Secondary Electron Microscopy. Disc specimens (14x2mm) were fabricated by heat pressing or sintering. The thermal expansion coefficient (TEC) was measured using Dilatometry. Experimental and IPS Empress Esthetic (EA) glass-ceramic specimens (n=30) were tested using the Biaxial Flexural Strength (BFS, ball on ring) test at a crosshead speed of 1mm/min.Results: HTXRD showed phase changes of glass A with increasing temperature and tetragonal leucite was found in all test glass-ceramics. Experimental glass-ceramics showed fine and evenly distributed leucite crystals. Optimized Leucite glass-ceramic crystallization produced a reduction in leucite crystal size to a Mean (SD) of 0.15(0.09)µm2. The glass-ceramic TEC (x10-6.K-1, 100-400ºC) was; A: 18.2, Aopt (optimized glass-ceramic A): 18.8, heat extruded Aopt: 19.7 and EA: 16.7. The BFS test and Weibull analysis results of the test groups were given in the following Table, where different superscript letters indicate significant differences between groups (p<0.05).Glass-CeramicsMean BFS (SD) (MPa)Weibull mCharacteristic Strength (MPa)A253.8 (53.3)a5.4a274.9aAopt252.4 (38.7)a8.7bc266.2aHeat Extruded Aopt245.0 (24.3)a11.9b255.5aHeat Extruded EA165.5 (30.6)b6.3ac177.5bConclusions: Optimized crystallization of novel leucite glass-ceramics produced high strength and reliable extruded leucite glass-ceramics.

Topics
  • microstructure
  • phase
  • x-ray diffraction
  • experiment
  • extrusion
  • glass
  • glass
  • strength
  • flexural strength
  • thermal expansion
  • differential scanning calorimetry
  • electron microscopy
  • ceramic
  • crystallization
  • sintering
  • elemental analysis
  • dilatometry