Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chen, Xiaohui

  • Google
  • 22
  • 39
  • 185

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (22/22 displayed)

  • 2022Effect of sandblasting with fluorapatite glass-ceramic powder and chemical primers/adhesives on shear bond strength of indirect repairing composite to zirconia7citations
  • 2020Fluorapatite Glass-Ceramics: A New Sandblasting Approach for Zirconia Repaircitations
  • 2019Preliminary study of hydroxyapatite particles air abrasive blasting on Mg-4Zn-0.3Ca surface1citations
  • 2016Design and Synthesis of New Translucent, High Strength Leucite Glass-Ceramicscitations
  • 2016Surface properties of tricalcium phosphate and hydroxyapatite resin compositescitations
  • 2014Leucite Glass Ceramicscitations
  • 2014The Retarding Effect of Zinc Oxide on Dissolution and Apatite Formation of a Fluoride Containing Bioactive Glasscitations
  • 2014'Smart' acid-degradable zinc-releasing silicate glasses37citations
  • 2014Low-sodium Bioactive Glass Coatings for Titanium Implants by Grit Blastingcitations
  • 2013Remineralisation Study of a Nano-sized Hydroxyapatite and Fluoride Containing Toothpastecitations
  • 2013Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics24citations
  • 2013Crystallization of high-strength nano-scale leucite glass-ceramics30citations
  • 2012Wear characteristics of fine and nano-scale high-strength leucite glass-ceramicscitations
  • 2011Crystallization and flexural strength optimization of fine-grained leucite glass-ceramics for dentistry58citations
  • 2010Development and testing of multi-phase glazes for adhesive bonding to zirconia substratescitations
  • 2010Crystallization of high-strength fine-sized leucite glass-ceramics28citations
  • 2010Synthesis of nano-sized Leucite Glass-ceramicscitations
  • 2010Wear Characteristics of an Experimental High-Strength Fine-Sized Leucite Glass-Ceramiccitations
  • 2010Optimization of Novel Leucite Glass-ceramicscitations
  • 2009Effect of Glass Powder Size on Leucite Glass-Ceramic Crystallisationcitations
  • 2009Control of ceramic microstructurecitations
  • 2007Microstructure and Thermal Expansion Properties of Some Leucite Glass-Ceramicscitations

Places of action

Chart of shared publication
Silikas, Nikolaos
3 / 93 shared
Elraggal, Alaaeldin
2 / 5 shared
Seli, Hazman
1 / 1 shared
Thomas, Andrew G.
1 / 28 shared
Theocharopoulos, Antonios
4 / 4 shared
Almuhamadi, Jamelia
1 / 1 shared
Cattell, Mike
3 / 3 shared
Karpukhina, Natalia
2 / 8 shared
Hill, Robert
4 / 7 shared
Watts, Dc.
1 / 116 shared
Salah-Ud-Din, Rabia
1 / 1 shared
Thecharopoulos, Antonios
1 / 1 shared
Hill, R. G.
2 / 3 shared
Mneimne, M.
1 / 1 shared
Karpukhina, N.
3 / 5 shared
Shah, P.
1 / 2 shared
Mckay, I. J.
1 / 2 shared
Waite, R. D.
1 / 1 shared
Barry, M.
1 / 1 shared
Brauer, D. S.
1 / 9 shared
Al-Ani, M. D.
1 / 1 shared
Hill, Robert G.
5 / 16 shared
Hill, R.
5 / 7 shared
Gillam, D.
1 / 1 shared
Bernholt, R.
1 / 1 shared
Cattell, Michael J.
3 / 4 shared
Cattell, M. J.
2 / 3 shared
Theocharopoulos, A.
2 / 2 shared
Wilson, R. M.
2 / 4 shared
Chadwick, Thomas C.
2 / 2 shared
Wilson, Rory M.
1 / 3 shared
Ntala, Polyxeni
1 / 1 shared
Cattell, Michael
1 / 1 shared
Niggli, Jason
1 / 1 shared
Chadwick, T. C.
1 / 1 shared
Cattell, Mike J.
3 / 3 shared
Cattell, M.
2 / 2 shared
Riodel, Jacques V.
1 / 1 shared
Ibsen, Robert
1 / 1 shared
Chart of publication period
2022
2020
2019
2016
2014
2013
2012
2011
2010
2009
2007

Co-Authors (by relevance)

  • Silikas, Nikolaos
  • Elraggal, Alaaeldin
  • Seli, Hazman
  • Thomas, Andrew G.
  • Theocharopoulos, Antonios
  • Almuhamadi, Jamelia
  • Cattell, Mike
  • Karpukhina, Natalia
  • Hill, Robert
  • Watts, Dc.
  • Salah-Ud-Din, Rabia
  • Thecharopoulos, Antonios
  • Hill, R. G.
  • Mneimne, M.
  • Karpukhina, N.
  • Shah, P.
  • Mckay, I. J.
  • Waite, R. D.
  • Barry, M.
  • Brauer, D. S.
  • Al-Ani, M. D.
  • Hill, Robert G.
  • Hill, R.
  • Gillam, D.
  • Bernholt, R.
  • Cattell, Michael J.
  • Cattell, M. J.
  • Theocharopoulos, A.
  • Wilson, R. M.
  • Chadwick, Thomas C.
  • Wilson, Rory M.
  • Ntala, Polyxeni
  • Cattell, Michael
  • Niggli, Jason
  • Chadwick, T. C.
  • Cattell, Mike J.
  • Cattell, M.
  • Riodel, Jacques V.
  • Ibsen, Robert
OrganizationsLocationPeople

conferencepaper

The Retarding Effect of Zinc Oxide on Dissolution and Apatite Formation of a Fluoride Containing Bioactive Glass

  • Hill, R. G.
  • Mneimne, M.
  • Karpukhina, N.
  • Shah, P.
  • Chen, Xiaohui
Abstract

INTRODUCTION<br/>Fluoride containing bioactive glasses are attractive for incorporation into remineralising toothpastes for three reasons: (i) they form fluorapatite which is much more acid durable than hydroxycarbonated apatite; (ii) they release fluoride that is known to inhibit apatite dissolution and caries formation; and (iii) they have a more disrupted glass network with lower glass transition temperatures and should be softer and are therefore less abrasive towards enamel. <br/>Fluoride containing bioactive glasses were originally studied by Spilman and Hench1 in the 1970s but there has been increased interest in fluoride containing glasses in recent years including glasses with high phosphate2.<br/>Zinc Oxide has been incorporated into bioactive glasses3 and it is potentially attractive for use in toothpastes, since zinc salts are added to existing toothpastes where the zinc has a bacteriocidal action, an anti-caries action and an anti-gingivitis action.<br/>This study examines the influence of ZnO incorporation on the dissolution and apatite forming ability of a high phosphate fluoride containing bioactive glass. Since ZnO is thought to act as an intermediate oxide it has been substituted for SiO2 with additional CaO and Na2O to charge balance the ZnO4 tetrahedra and maintain a fixed network connectivity.<br/><br/>EXPERIMENTAL METHODS<br/>Bioactive glasses with and without 2 mol% of ZnO were synthesised and studied. Glass degradation and apatite formation was followed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and magic angle spinning nuclear magnetic resonance (MAS-NMR). The ions in solution following immersion in Tris buffer were determined by inductively coupled plasma – optical emission spectroscopy (ICP-OES) and by a fluoride-ion selective electrode.<br/><br/>RESULTS AND DISCUSSION<br/>The zinc free glass formed a fluorapatite (FAP) like phase in under two hours that was evident in the XRD patterns and FTIR spectra. The zinc containing glass did not show sharp XRD peaks of the apatite phase until 24 hours immersion and did not show the characteristic (PO4) peaks of a crystalline orthophosphate in the FTIR spectra. The 31P and 19F MAS-NMR spectra showed that the zinc free glass formed FAP in under two hours and the dissolution of the glass was complete in less than 6 hours. The zinc containing glass also formed a FAP, but the apatite formed was in smaller amounts and the broader peaks indicate a more disordered apatite. The dissolution of the glass in terms of its fluoride and phosphate content was not complete in 24 hours.<br/><br/>CONCLUSION<br/>Zinc oxide substitution in bioactive glass slows down rapid degradation of the bioactive glass and formation of the apatite phase. Thus, the studied composition of the zinc containing bioactive glass can be incorporated as a desensitiser into remineralising toothpaste. Sustained release of both fluoride and zinc ions from the bioactive glass can deliver therapeutic effect via toothpaste.<br/><br/>REFERENCES<br/>1. Hench L.L. et al., US patent 4775646. 1988.<br/>2. Mneimne M. et al., Acta Biomater. 7:1827-1834, 2011.<br/>3. Linati L. et al., J Phys Chem B, 109:4989-4998, 2005.<br/><br/>ACKNOWLEDGMENTS<br/>Authors would like to acknowledge Dr Rory Wilson for XRD measurements, Dr Andy Bushby, Dr David Gillam and Dr Jonathan Earl for useful discussions.<br/>

Topics
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • zinc
  • glass
  • glass
  • laser emission spectroscopy
  • glass transition temperature
  • Nuclear Magnetic Resonance spectroscopy
  • atomic emission spectroscopy
  • spinning