Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sertsou, Gabriel

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002Factors affecting incorporation of drug into solid solution with HPMCP during solvent change co-precipitationcitations

Places of action

Chart of shared publication
Rades, Thomas
1 / 107 shared
Hempenstall, John
1 / 1 shared
Scott, Andy
1 / 1 shared
Butler, James
1 / 2 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Rades, Thomas
  • Hempenstall, John
  • Scott, Andy
  • Butler, James
OrganizationsLocationPeople

article

Factors affecting incorporation of drug into solid solution with HPMCP during solvent change co-precipitation

  • Rades, Thomas
  • Hempenstall, John
  • Scott, Andy
  • Butler, James
  • Sertsou, Gabriel
Abstract

Drug-hydroxypropyl methylcellulose phthalate (HPMCP) mixtures were completely dissolved in acetone, and the resulting solution was added drop-wise into HCl(aq). Resulting co-precipitates were filtered, and then dried under vacuum at 45 degrees C, -800 mbar for 24 h. Modulated differential scanning calorimetry, thermogravimetric analysis, X-ray powder diffraction and HPLC were used to detect and quantify different phases present in co-precipitates. A 1/8 factorial study followed by a circumscribed central composite (CCC) study of significant factors, were used to detect and quantify respectively, the effects that processing factors had on the percentage of drug present in co-precipitates which was incorporated into solid solution (the response). Robustness of the model obtained from the CCC study was tested. Statistically significant factors were found to be the percentage of drug added into solvent, stirrer speed, and antisolvent pH. The statistically significant mathematical model obtained from the CCC study predicted that the dominant factor influencing the response is the percentage of drug added into solvent. The effect of stirrer speed on the response includes a local maximum at stirrer speed approximately 700 rpm. Both stirrer speed and antisolvent pH showed interactions with the percentage of drug added into solvent. The model obtained from this study indicated the possibility of two opposing phenomena influencing the response: crystallization inhibition by HPMCP, and solvent-antisolvent plasticization. Testing of this model using eight experimentally determined points showed reasonable robustness, with six out of eight points lying inside 95% prediction intervals.

Topics
  • impedance spectroscopy
  • phase
  • composite
  • thermogravimetry
  • precipitate
  • precipitation
  • differential scanning calorimetry
  • crystallization
  • High-performance liquid chromatography