People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Robson, Joseph D.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Mitigation effects of over-aging (T73) induced intergranular corrosion on stress corrosion cracking of AA7075 aluminum alloy and behaviors of η phase grain boundary precipitates during the intergranular corrosion formationcitations
- 2023Mapping Plastic Deformation Mechanisms in AZ31 Magnesium Alloy at the Nanoscalecitations
- 2023LaserbeamFoam: Laser Ray-Tracing and Thermally Induced State Transition Simulation Toolkitcitations
- 2023Interactions between plastic deformation and precipitation in Aluminium alloys: A crystal plasticity modelcitations
- 2022Modelling dynamic precipitation in pre-aged aluminium alloys under warm forming conditionscitations
- 2022Simulating intergranular hydrogen enhanced decohesion in aluminium using density functional theorycitations
- 2021Preageing of Magnesium Alloyscitations
- 2020Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolutioncitations
- 2019Reducing yield asymmetry and anisotropy in wrought magnesium alloys – a comparative studycitations
- 2019The Effect of Precipitates on Twinning in Magnesium Alloyscitations
- 2018Numerical simulation of grain boundary carbides evolution in 316H stainless steelcitations
- 2017How magnesium accommodates local deformation incompatibility: a high-resolution digital image correlation studycitations
- 2016Process Optimization of Dual-Laser Beam Welding of Advanced Al-Li Alloys Through Hot Cracking Susceptibility Modelingcitations
- 2015Compositional variations for small-scale gamma prime (γ′) precipitates formed at different cooling rates in an advanced Ni-based superalloycitations
- 2015Grain Boundary Segregation of Rare-Earth Elements in Magnesium Alloyscitations
- 2014Contribution of twinning to low strain deformation in a Mg alloycitations
- 2013Constituent particles and dispersoids in an Al-Mn-Fe-Si alloy studied in three-dimensions by serial sectioningcitations
- 2013The effectiveness of surface coatings on preventing interfacial reaction during ultrasonic welding of aluminum to magnesiumcitations
- 2009Determination and interpretation of texture evolution during deformation of a zirconium alloy
Places of action
Organizations | Location | People |
---|
document
Determination and interpretation of texture evolution during deformation of a zirconium alloy
Abstract
Worldwide, crystal plasticity models are currently developed to predict texture development during processing of material. Such models require a precise knowledge of the active deformation mechanisms. The activation energy for certain deformation modes will change with temperature and also depend on the chemistry of the alloy as well as the microstructure. Deformation mechanisms were studied in ZIRLO™ during room and high-temperature uniaxial compression testing. Materials with a strong crystallography basal texture and a more random texture due to β-quenching were investigated with the aim of establishing the effect of temperature, microstructure, and texture on the active deformation modes during the initial stages of deformation. First, specimens were strained at room temperature, 180°C and 300°C to 2 % and 5 % or 10 % total strain and subsequently analyzed by Electron Back Scatter Diffraction (EBSD) to determine the texture evolution. It was found that a dramatic texture change was observed for all testing temperatures in the strongly textured specimen after only 5 % total strain, which can only be understood in terms of tensile twinning of {101̄2} 〈1011〉 being active mainly at room temperature and compressive twinning of {112̄2} (1̄1̄23) being operational at room and elevated temperature. The β-quenched specimens did not show any evidence of texture change when strained to 10 %. In-situ intergranular strains were measured by time-of-flight neutron diffraction during continuous compressive loading. This information enabled the development of a crystal plasticity finite element model (CPFEM), which was subsequently used to predict the stress state in individual grains. It was found that in the strongly textured material the spread of intergranular strain in the {0002} grain family (normal pointing towards the ND direction) results in some grains being in compression even though the mean stresses are tensile, which could explain the activation of the observed compressive twinning. The crystal plasticity model also demonstrated that the observed texture changes in the strongly textured material, including those at high temperature, cannot be explained by slip alone even when 〈c+a〉 slip is considered. In addition, the model showed that the dramatic difference in yield strength of the two conditions studied here cannot be solely attributed to the difference in texture but that grain size plays an important role. Copyright © 2008.