People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jayathilake, Dsy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Dispersion and microwave processing of nano-sized ITO powder for the fabrication of transparent conductive oxides
Abstract
Aqueous dispersions of tin-doped indium oxide (ITO) nanopowder were prepared and the effect of the addition of PEG 400, Tween 80 and β-alanine as dispersants was investigated using zeta potential and particle size distribution measurements. Both PEG 400 and β-alanine were found to produce stable dispersions that were used to deposit ITO thin films on glass substrates by dip and spin coating methods. The ITO thin films were heat-treated using both conventional and microwave heat treatment in order to improve the inter-particle connections and hence the resistivity and transparency of the films. All the films exhibited an average transmittance of >80% over the visible spectrum after being subjected to the heat treatment process. ITO films prepared with no dispersant showed very high resistivity values for both heating methods, however addition of 2 wt% PEG 400 to the dispersion yielded a reduction in the resistivity values to 1.4×10−1 Ω cm and 3.8×10−2 Ω cm for conventionally and microwave treated films, respectively. The surface morphological studies confirmed that addition of dispersants improved the film uniformity and inter-particle connections of the ITO films considerably.