Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jobke, B.

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Allocation of nonbirefringent wear debris: darkfield illumination associated with PIXE microanalysis reveals cobalt deposition in mineralized bone matrix adjacent to CoCr implants.citations

Places of action

Chart of shared publication
Niecke, M.
1 / 3 shared
Püschel, Klaus
1 / 4 shared
Delling, G.
1 / 3 shared
Katzer, A.
1 / 3 shared
Busse, Björn
1 / 8 shared
Hahn, M.
1 / 17 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Niecke, M.
  • Püschel, Klaus
  • Delling, G.
  • Katzer, A.
  • Busse, Björn
  • Hahn, M.
OrganizationsLocationPeople

article

Allocation of nonbirefringent wear debris: darkfield illumination associated with PIXE microanalysis reveals cobalt deposition in mineralized bone matrix adjacent to CoCr implants.

  • Niecke, M.
  • Püschel, Klaus
  • Delling, G.
  • Jobke, B.
  • Katzer, A.
  • Busse, Björn
  • Hahn, M.
Abstract

Abrasive joint replacement material that accumulates in the tissue induces reciprocal effects between prosthesis material and organism. Since the limitations of brightfield and polarized light microscopy for foreign body analysis are well known, a method was applied that ensures the detailed histological assessment of nonbirefringent particles in periprosthetic soft and hard tissue. Cemented and cementless interface regions of five selected autopsy hip implant cases (2 x Endo-Modell Mark III, LINK, 1 x St. Georg Mark II, LINK, Germany; 2 x Spongiosa Metal II, ESKA, Germany) were viewed under darkfield illumination and subsequently analyzed with proton-induced X-ray emission (PIXE). Eight autopsy cases without implants served as controls. Using darkfield illumination technique, metallic particles became visible as luminous points under the microscope. The majority of particles in the samples from the cemented cases were degradation products of radiopaque bone cement. There was minimal evidence of metallic alloy particles in the soft tissues. However, a considerable quantity of heavy metal cobalt (Co) was found in the periprosthetic mineralized bone tissue, which was not observed in the controls. The periprosthetic concentration of cobalt ranged from 38 to 413 ppm. The findings demonstrate a correlation between cobalt concentration, time since implantation, and distance from the implant. Darkfield microscopy associated with PIXE enables a detailed histological assessment of metal particles in the tissue. In an effort to optimize biomechanics, implant design and implantation techniques, the contamination of soft and hard tissue with heavy metal degradation products deserves similar attention in terms of alloy assortment.

Topics
  • Deposition
  • cement
  • cobalt
  • hot isostatic pressing
  • Polarized light microscopy
  • particle-induced X-ray emission spectroscopy