People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, Chung-Che
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (38/38 displayed)
- 2023Conformal CVD-grown MoS2 on three-dimensional woodpile photonic crystals for photonic bandgap engineeringcitations
- 2022Low energy switching of phase change materials using a 2D thermal boundary layercitations
- 2020Enhancement of nonlinear functionality of step-index silica fibers combining thermal poling and 2D materials depositioncitations
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Tuning MoS2 metamaterial with elastic strain
- 2019Tuning MoS 2 metamaterial with elastic strain
- 2018Optical-resonance-enhanced nonlinearities in a MoS2-coated single-mode fibercitations
- 2018Fabrication of micro-scale fracture specimens for nuclear applications by direct laser writing
- 2017Wafer scale pre-patterned ALD MoS 2 FETs
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Wafer scale pre-patterned ALD MoS2 FETs
- 2017Chemical vapor deposition and Van der Waals epitaxy for wafer-scale emerging 2D transition metal di-chalcogenides
- 2017A lift-off method for wafer scale hetero-structuring of 2D materials
- 2016Next generation chalcogenide glasses for visible and IR imaging
- 2016Advanced CVD technology for emerging transition metal di-chalcogenides
- 2015Fabrication of tin sulphide and emerging transition metal di-chalcogenides by CVD
- 2015CVD-grown tin sulphide for thin film solar cell devices
- 2014Manufacturing high purity chalcogenide glass
- 2013Crystallization study of the CuSbS2 chalcogenide material for solar applications
- 2012Laser-induced crystalline optical waveguide in glass fiber formatcitations
- 2011Novel methods for the preparation of high purity chalcogenide glass for optical fiber applications
- 2010Switching metamaterials with electronic signals and electron-beam excitations
- 2010Metamaterial electro-optic switch of nanoscale thicknesscitations
- 2010Chalcogenide glasses for photonics device applications
- 2010Chalcogenide plasmonic metamaterial switches
- 2010Active chalcogenide glass photonics and electro-optics for the mid-infrared
- 2009Chalcogenide glass metamaterial optical switch
- 2009Focused ion beam etched ring-resonator in CVD-grown Ge-Sb-S thin films
- 2007Antimony germanium sulphide amorphous thin films fabricated by chemical vapour depositioncitations
- 2007Electrical phase change of Ga:La:S:Cu filmscitations
- 2005Chalcogenide glass thin films and planar waveguidescitations
- 2004Deposition and characterization of germanium sulphide glass planar waveguidescitations
- 2003Properties and application of germanium sulphide glass
- 2003Through thick and thin: recent developments with chalcogenide films
Places of action
Organizations | Location | People |
---|
document
Wafer scale spatially selective transfer of 2D materials and heterostructures
Abstract
The boom in interest in two dimensional materials has led to intense research, increasingly towards the commercialization of this family of materials. Results to date have proved the viability of wafer scale production of 2D materials, nevertheless no technique for controllable large scale 2D heterostructures, which would seamlessly integrate with existing fabrication lines, has been presented. This is however essential for the production of wafer scale photodiodes, pn-diodes, diode logic gates, and other emerging devices.<br/>There are currently two main approaches for creating heterostructures, i) the sequentially epitaxial growth of 2D materials that results in random spatial growth, rendering this approach non-viable for commercial applications [1] and ii) the mechanical assembly technique, where a 2D flake is transferred and aligned to another flake to form just one heterostructure [2].<br/>Here we report a novel method that can achieve wafer scale fabrication of 2D material-based devices. The method is using a lift-off technique for the micro-patterning of TMDCs and graphene layers that are combined to form heterostructures. The low thermal budget of this process makes this method substrate-agnostic hence suitable for fabrication of devices on temperature sensitive materials such as polymers.<br/>The method uses Atomic Layer Deposition (ALD)-grown metal oxides converted by annealing protocols to 2D TMDCs and copper foil CVD - grown graphene as starting materials. The films are transferred to substrates covered with a pre-patterned photoresist layer. Lift off of the photoresist allows the spatially controllable transfer of the 2D materials allowing for sequential steps to produce aligned heterostructures over large areas.<br/>An overview of the process flow will be presented alongside with a examples of 2D heterostructures such as MoS<sub>2</sub> field effect transistors, using graphene source and drain contacts. The deposited microstructures are characterized and furthermore analyzed via Raman mapping, SEM, AFM and XPS measurements.<br/><br/>[1] W. S. Mos, Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou,G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, K. Tay, J.Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical andin-plane heterostructures from WS<sub>2</sub>/MoS<sub>2</sub> monolayers,” vol. 13, no. September, p. 8, 2014.<br/>[2]W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan,“Vertically stacked multi-heterostructures of layered materials forlogic transistors and complementary inverters.,” <i>Nat. Mater.</i>, vol. 12, no. 3, pp. 246–52, 2013