People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hansen, Thomas Willum
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (55/55 displayed)
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Beam induced heating in electron microscopy modeled with machine learning interatomic potentialscitations
- 2024Tracing the graphitization of polymers:A novel approach for direct atomic-scale visualizationcitations
- 2023Quantifying noise limitations of neural network segmentations in high-resolution transmission electron microscopycitations
- 2023Reconstructing the exit wave of 2D materials in high-resolution transmission electron microscopy using machine learningcitations
- 2022Machine-Learning Assisted Exit-wave Reconstruction for Quantitative Feature Extraction
- 2022Stereolithography-Derived Three-Dimensional Pyrolytic Carbon/Mn3O4 Nanostructures for Free-Standing Hybrid Supercapacitor Electrodescitations
- 2022Stereolithography-Derived Three-Dimensional Pyrolytic Carbon/Mn 3 O 4 Nanostructures for Free-Standing Hybrid Supercapacitor Electrodescitations
- 2021Reconstructing the exit wave in high-resolution transmission electron microscopy using machine learningcitations
- 2021Electron beam effects in high-resolution transmission electron microscopy investigations of catalytic nanoparticles
- 2020In Situ Study of the Motion of Supported Gold Nanoparticles
- 2020Reduction and carburization of iron oxides for Fischer–Tropsch synthesiscitations
- 2018Carbon support effects on the selectivity of Pd/C catalysts for the hydrogenation of multifunctional chemicals
- 2017Accuracy of surface strain measurements from transmission electron microscopy images of nanoparticlescitations
- 2017Induced Mesocrystal-Formation, Hydrothermal Growth and Magnetic Properties of α-Fe2O3 Nanoparticles in Salt-Rich Aqueous Solutionscitations
- 2016Development of the Atomic-Resolution Environmental Transmission Electron Microscopecitations
- 2015Environmental TEM study of the dynamic nanoscaled morphology of NiO/YSZ during reductioncitations
- 2015Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanolcitations
- 2015Intermetallic GaPd 2 Nanoparticles on SiO 2 for Low-Pressure CO 2 Hydrogenation to Methanol:Catalytic Performance and In Situ Characterizationcitations
- 2014Insights into chirality distributions of single-walled carbon nanotubes grown on different CoxMg1-xO solid solutionscitations
- 2014NiO/YSZ Reduction for SOFC/SOEC Studied In Situ by Environmental Transmission Electron Microscopycitations
- 2014Insights into chirality distributions of single-walled carbon nanotubes grown on different Co x Mg1- x O solid solutionscitations
- 2014Pattern recognition approach to quantify the atomic structure of graphenecitations
- 2014Structure Identification in High-Resolution Transmission Electron Microscopic Imagescitations
- 2014In Situ Study of Noncatalytic Metal Oxide Nanowire Growthcitations
- 2013Automated Structure Detection in HRTEM Images: An Example with Graphene
- 2013Focused electron beam induced processing and the effect of substrate thickness revisitedcitations
- 2013Focused electron beam induced processing and the effect of substrate thickness revisitedcitations
- 2013In situ Transmission Electron Microscopy of catalyst sinteringcitations
- 2013Optical coupling in the ETEM
- 2013Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?citations
- 2013Dynamics of Catalyst Nanoparticles
- 2013The role of electron-stimulated desorption in focused electron beam induced depositioncitations
- 2013The role of electron-stimulated desorption in focused electron beam induced depositioncitations
- 2012Dynamic study of carbon nanotube growth and catalyst morphology evolution during acetylene decomposition on Co/SBA-15 in an environmental TEM
- 2012Dynamic study of carbon nanotube growth and catalyst morphology evolution during acetylene decomposition on Co/SBA-15 in an environmental TEM
- 2012Mechanical properties of low-density polyethylene filled by graphite nanoplateletscitations
- 2012Mechanical properties of low-density polyethylene filled by graphite nanoplateletscitations
- 2012Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalystscitations
- 2011Nanometer-scale lithography on microscopically clean graphenecitations
- 2011Nanometer-scale lithography on microscopically clean graphenecitations
- 2011Ultrahigh resolution focused electron beam induced processing: the effect of substrate thicknesscitations
- 2011In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopycitations
- 2011Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope
- 2010In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscopecitations
- 2010In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscopecitations
- 2010Using environmental transmission electron microscope to study the in-situ reduction of Co3O4 supported on α-Al2O3
- 2010Dynamics of Supported Metal Nanoparticles Observed in a CS Corrected Environmental Transmission Electron Microscope
- 2010Dynamical Response of Catalytic Systems in a CS Corrected Environmental Transmission Electron Microscope
- 2009The Titan Environmental Transmission Electron Microscopecitations
- 2007Structural and Morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesiscitations
- 2006Sintering and Particle Dynamics in Supported Metal Catalysts
Places of action
Organizations | Location | People |
---|
thesis
Sintering and Particle Dynamics in Supported Metal Catalysts
Abstract
Sintering represents a significant route of deactivation of supported metal catalysts. Hence a fundamental understanding of the phenomenon is important when designing catalysts more resistant to deactivation by sintering. The aim of this work is to elucidate the mechanism of sintering under simulated industrial conditions. The main focus is on studying the assumptions leading to the derivation of a model for sintering of industrial steam-reforming catalysts. The validity in extrapolation of the model to the low-pressure simulated steam-reforming environment used in the in situ transmission electron microscope (in situ TEM) experiments in this study is also investigated, thus establishing a link over a wide range of pressure. In this thesis, the sintering of oxide supported metal particles were studied using in situ TEM and scanning electron microscopy. For the in situ TEM studies, a nickel-based steam-reforming catalyst was studied under conditions relevant for the steam-reforming reaction. Three sets of experiments were carried out. One set of experiments focused on the effect of atmosphere. The catalyst samples were treated in atmospheres with and without water vapor present at different temperatures. Particle diameters were measured at different instances and particle size distributions determined as a function of time. The second set of experiments focused on the effect of time. The catalyst samples were sintered in the in situ microscope for a certain period of time and the particle size distributions and mean particle diameter determined before and after treatment. The idea of these first two experiments is to create a reference to later online experiments and to compare with predictions from a model derived from experiments carried out at in a reactor at ambient pressure. In the third set of experiments the migration of the metal particles was monitored online. Samples were treated in different atmospheres and temperatures and particle migration was recorded as a function of particle size. An analysis of the three sets of experiments showed agreement with the trends found in reactor experiments under industrial conditions for the change in the mean particle diameter. Deviation from classical models were in that the smallest particles did not migrate the longest distances as classical theory predicts. Instead particles around 8-10nm are most mobile and coalesce with other particles during their migration. A population of small particles was present on the support surface even after 5 hours of sintering. This population did, however, decrease in number over the sintering period. The presence of small particles suggests that a large number of the particles do not themselves migrate and participate in the sintering only when absorbed by other particles. These small particles are somehow anchored to the support. The frequency with which metal particles were observed to sinter can account for the changes observed in the particle size distributions. Based on the observations, a model is proposed that includes one activation energy related to the release of particles from their anchoring sites and a second activation energy accounting for the migration of metal particles over the support. A series of sintering experiments on flat model catalysts were carried out and studied in the scanning electron microscope. These studies were aimed at supporting the observations and the model derived from the in situ TEM experiments. As the experiments with flat model systems produce particle size distributions with better statistics, the shape of these can be derived more convincingly. Further the flat model substrates decreases the complexity of the industrial catalyst studied in the in situ TEM by removing a spatial dimension. These experiments also showed that the smallest particles may be anchored to the support while larger particles show signs of migration.