People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hansen, Thomas Willum
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (55/55 displayed)
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Beam induced heating in electron microscopy modeled with machine learning interatomic potentialscitations
- 2024Tracing the graphitization of polymers:A novel approach for direct atomic-scale visualizationcitations
- 2023Quantifying noise limitations of neural network segmentations in high-resolution transmission electron microscopycitations
- 2023Reconstructing the exit wave of 2D materials in high-resolution transmission electron microscopy using machine learningcitations
- 2022Machine-Learning Assisted Exit-wave Reconstruction for Quantitative Feature Extraction
- 2022Stereolithography-Derived Three-Dimensional Pyrolytic Carbon/Mn3O4 Nanostructures for Free-Standing Hybrid Supercapacitor Electrodescitations
- 2022Stereolithography-Derived Three-Dimensional Pyrolytic Carbon/Mn 3 O 4 Nanostructures for Free-Standing Hybrid Supercapacitor Electrodescitations
- 2021Reconstructing the exit wave in high-resolution transmission electron microscopy using machine learningcitations
- 2021Electron beam effects in high-resolution transmission electron microscopy investigations of catalytic nanoparticles
- 2020In Situ Study of the Motion of Supported Gold Nanoparticles
- 2020Reduction and carburization of iron oxides for Fischer–Tropsch synthesiscitations
- 2018Carbon support effects on the selectivity of Pd/C catalysts for the hydrogenation of multifunctional chemicals
- 2017Accuracy of surface strain measurements from transmission electron microscopy images of nanoparticlescitations
- 2017Induced Mesocrystal-Formation, Hydrothermal Growth and Magnetic Properties of α-Fe2O3 Nanoparticles in Salt-Rich Aqueous Solutionscitations
- 2016Development of the Atomic-Resolution Environmental Transmission Electron Microscopecitations
- 2015Environmental TEM study of the dynamic nanoscaled morphology of NiO/YSZ during reductioncitations
- 2015Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanolcitations
- 2015Intermetallic GaPd 2 Nanoparticles on SiO 2 for Low-Pressure CO 2 Hydrogenation to Methanol:Catalytic Performance and In Situ Characterizationcitations
- 2014Insights into chirality distributions of single-walled carbon nanotubes grown on different CoxMg1-xO solid solutionscitations
- 2014NiO/YSZ Reduction for SOFC/SOEC Studied In Situ by Environmental Transmission Electron Microscopycitations
- 2014Insights into chirality distributions of single-walled carbon nanotubes grown on different Co x Mg1- x O solid solutionscitations
- 2014Pattern recognition approach to quantify the atomic structure of graphenecitations
- 2014Structure Identification in High-Resolution Transmission Electron Microscopic Imagescitations
- 2014In Situ Study of Noncatalytic Metal Oxide Nanowire Growthcitations
- 2013Automated Structure Detection in HRTEM Images: An Example with Graphene
- 2013Focused electron beam induced processing and the effect of substrate thickness revisitedcitations
- 2013Focused electron beam induced processing and the effect of substrate thickness revisitedcitations
- 2013In situ Transmission Electron Microscopy of catalyst sinteringcitations
- 2013Optical coupling in the ETEM
- 2013Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?citations
- 2013Dynamics of Catalyst Nanoparticles
- 2013The role of electron-stimulated desorption in focused electron beam induced depositioncitations
- 2013The role of electron-stimulated desorption in focused electron beam induced depositioncitations
- 2012Dynamic study of carbon nanotube growth and catalyst morphology evolution during acetylene decomposition on Co/SBA-15 in an environmental TEM
- 2012Dynamic study of carbon nanotube growth and catalyst morphology evolution during acetylene decomposition on Co/SBA-15 in an environmental TEM
- 2012Mechanical properties of low-density polyethylene filled by graphite nanoplateletscitations
- 2012Mechanical properties of low-density polyethylene filled by graphite nanoplateletscitations
- 2012Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalystscitations
- 2011Nanometer-scale lithography on microscopically clean graphenecitations
- 2011Nanometer-scale lithography on microscopically clean graphenecitations
- 2011Ultrahigh resolution focused electron beam induced processing: the effect of substrate thicknesscitations
- 2011In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopycitations
- 2011Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope
- 2010In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscopecitations
- 2010In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscopecitations
- 2010Using environmental transmission electron microscope to study the in-situ reduction of Co3O4 supported on α-Al2O3
- 2010Dynamics of Supported Metal Nanoparticles Observed in a CS Corrected Environmental Transmission Electron Microscope
- 2010Dynamical Response of Catalytic Systems in a CS Corrected Environmental Transmission Electron Microscope
- 2009The Titan Environmental Transmission Electron Microscopecitations
- 2007Structural and Morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesiscitations
- 2006Sintering and Particle Dynamics in Supported Metal Catalysts
Places of action
Organizations | Location | People |
---|
document
Dynamic study of carbon nanotube growth and catalyst morphology evolution during acetylene decomposition on Co/SBA-15 in an environmental TEM
Abstract
In situ studies of micro- and nano-objects in their characteristic environment have been performed ever since the early days of electron microscopy [1]. Over several decades the in situ observation of the synthesis of filamentous carbon (nanotubes/nanofilaments) during hydrocarbon decomposition has been one of the most popular topics [2] for investigation in the environmental transmission electron microscope (ETEM). In this work we study the growth of carbon nanotubes (CNTs) by the decomposition of acetylene on Co nanoparticles inserted into mesoporous silicas (SBA-15) using both conventional post mortem TEM measurements and real-time in situ ETEM observations.<br/>In situ observation of the formation of the carbon nanotubes was performed in an FEI Titan 80-300 ETEM equipped with an objective lens spherical aberration corrector [3]. Prior to acetylene decomposition, the catalyst nanoparticles were reduced in situ in a flow of hydrogen (1 mbar, ~500°C). Electron energy-loss spectra taken before and during reduction showed that the Co oxide nanoparticles were reduced to metallic Co. In situ high resolution TEM images are consistent with cubic Co. A first attempt to study carbon nanotube growth above 600°C in 0.6 mbar of acetylene in situ in the ETEM resulted in complete growth of CNTs within seconds (or faster) which was not consistent with real-time growth observation with the electron microscope. The temperature was therefore decreased to ~ 500°C and acetylene pressure in the 10-3/10-2 mbar range was used to decrease the growth rate to allow real-time observation of the formation of CNTs over several minutes. These conditions also reduced the coking of the nanoparticles and favoured the formation of tubular structures. Two types of CNTs following the tip-growth mechanism with apparently different growth rates were observed : (i) CNTs with diameters of 5 to 10 nm and rather uniform central channels (black arrows in Fig. 1a). These nanotubes grew primarily on small round shaped nanoparticles and (ii) CNTs containing voids and/or non-uniform central channels, with diameters of 15 to 20 nm (white arrows in Fig. 1a). These nanotubes grew on well-faceted nanoparticles that adopted “pyramidal shapes” during growth and were larger than the pores of SBA-15. Real-time morphological changes of the catalyst were observed during growth (Fig. 1b). As reported previously in the literature [2 (fourth and eighth references therein)] the Co nanoparticle pulsated (elongated and contracted) during the growth of the nanotube. This sequential elongation, often associated with the formation of a narrow neck, is clearly responsible for the presence of small nanoparticles within the nanotubes (Fig. 2).<br/>Furthermore it was possible to observe severe degradation of the carbon nanotube structure during exposure to the energetic electron beam (Fig. 3) revealing that during real time in situ observation of chemical processes one has to take into account the role of the energetic electron beam or devise ways to minimize its contribution.<br/>Ultimately these in situ real-time studies allow measurements of the growth rates that are expected to provide new insights on the catalyst dynamics during growth including the evolution of exposed facets and (ideally) the identification of lattice planes and/or specific sites responsible for preferential carbon expulsion essential to understand the growth mechanisms of the different CNTs.<br/>In an more general scope it is clear that ETEM studies of catalytic processes need real-time capability not only in the range of seconds (as it is available in contemporary microscopes) but in much lower timescales (milliseconds to nanoseconds or even bellow) and in the different modes available in the ETEM (high resolution BF and HAADF imaging, diffraction, EELS, tomography…). This can of course be implemented by using the dynamic TEM approach in an ETEM even though some technological difficulties (namely for tomography) have to be overcome at the present time.