Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhupathi, S.

  • Google
  • 3
  • 12
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017Electron holography on HfO2/HfO2-x bilayer structures with multilevel resistive switching properties33citations
  • 2017Electron holography on HfO2/HfO2−xbilayer structures with multilevel resistive switching propertiescitations
  • 2017Electron holography on HfO2/HfO2−x bilayer structures with multilevel resistive switching propertiescitations

Places of action

Chart of shared publication
Schubert, M. A.
3 / 5 shared
Zaumseil, P.
3 / 11 shared
Niu, G.
3 / 6 shared
Hildebrandt, E.
3 / 6 shared
Niermann, T.
3 / 5 shared
Schroeder, T.
3 / 21 shared
Perez, E.
3 / 3 shared
Alff, L.
3 / 7 shared
Vogel, S.
3 / 9 shared
Wenger, C.
3 / 3 shared
Lehmann, M.
3 / 7 shared
Sharath, S. U.
3 / 7 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Schubert, M. A.
  • Zaumseil, P.
  • Niu, G.
  • Hildebrandt, E.
  • Niermann, T.
  • Schroeder, T.
  • Perez, E.
  • Alff, L.
  • Vogel, S.
  • Wenger, C.
  • Lehmann, M.
  • Sharath, S. U.
OrganizationsLocationPeople

article

Electron holography on HfO2/HfO2−xbilayer structures with multilevel resistive switching properties

  • Schubert, M. A.
  • Zaumseil, P.
  • Niu, G.
  • Hildebrandt, E.
  • Niermann, T.
  • Schroeder, T.
  • Perez, E.
  • Alff, L.
  • Bhupathi, S.
  • Vogel, S.
  • Wenger, C.
  • Lehmann, M.
  • Sharath, S. U.
Abstract

Unveiling the physical nature of the oxygen-deficient conductive filaments (CFs) that are responsible for the resistive switching of the HfO2-based resistive random access memory (RRAM) devices represents a challenging task due to the oxygen vacancy related defect nature and nanometer size of the CFs. As a first important step to this goal, we demonstrate in this work direct visualization and a study of physico–chemical properties of oxygen-deficient amorphous HfO2−x by carrying out transmission electron microscopy electron holography as well as energy dispersive x-ray spectroscopy on HfO2/HfO2−x bilayer heterostructures, which are realized by reactive molecular beam epitaxy. Furthermore, compared to single layer devices, Pt/HfO2/HfO2−x /TiN bilayer devices show enhanced resistive switching characteristics with multilevel behavior, indicating their potential as electronic synapses in future neuromorphic computing applications.

Topics
  • amorphous
  • Oxygen
  • reactive
  • transmission electron microscopy
  • random
  • tin
  • X-ray spectroscopy
  • vacancy