People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kiil, Søren
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (47/47 displayed)
- 2024Protective Mechanisms of Siloxane-Modified Epoxy Novolac Coatings at High-Pressure, High-Temperature Conditions
- 2024Wettability of Water- and Solvent-borne Epoxy Coatings on Contaminated Steel Substrates
- 2024Wettability of waterborne and solvent-based epoxy coatings on contaminated steel panels
- 2023Incorporation of unmodified technical Kraft lignin particles in anticorrosive epoxy novolac coatings
- 2023Incorporation of unmodified technical Kraft lignin particles in anticorrosive epoxy novolac coatings
- 2023Chemically-resistant epoxy novolac coatings: Effects of size-fractionated technical Kraft lignin particles as a structure-reinforcing componentcitations
- 2023Chemically-resistant epoxy novolac coatings: Effects of size-fractionated technical Kraft lignin particles as a structure-reinforcing componentcitations
- 2023Chemically-resistant epoxy novolac coatings : Effects of size-fractionated technical Kraft lignin particles as a structure-reinforcing componentcitations
- 2022Detection and quantification of premature crack formation in curing epoxy coatingscitations
- 2022Detection and quantification of premature crack formation in curing epoxy coatingscitations
- 2022Parallel measurements and engineering simulations of conversion, shear modulus, and internal stress during ambient curing of a two-component epoxy coatingcitations
- 2022Parallel measurements and engineering simulations of conversion, shear modulus, and internal stress during ambient curing of a two-component epoxy coatingcitations
- 2021Methanol degradation mechanisms and permeability phenomena in novolac epoxy and polyurethane coatingscitations
- 2021Methanol degradation mechanisms and permeability phenomena in novolac epoxy and polyurethane coatingscitations
- 2021The influence of CO2 at HPHT conditions on properties and failures of an amine-cured epoxy novolac coatingcitations
- 2021Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatingscitations
- 2021Degradation pathways of amine-cured epoxy novolac and bisphenol F resins under conditions of high pressures and high temperatures
- 2021Degradation pathways of amine-cured epoxy novolac and bisphenol F resins under conditions of high pressures and high temperatures
- 2021Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatingscitations
- 2021The influence of CO 2 at HPHT conditions on properties and failures of an amine-cured epoxy novolac coatingcitations
- 2021The evolution of coating properties and internal stress during ambient curing of a two-component epoxy coating
- 2021The evolution of coating properties and internal stress during ambient curing of a two-component epoxy coating
- 2020Experimental Investigation and Mathematical Modeling of the Reaction between SO2(g) and CaCO3(s)-containing Micelles in Lube Oil for Large Two-Stroke Marine Diesel Enginescitations
- 2019Mixed Flow Reactor Experiments and Modeling of Sulfuric Acid Neutralization in Lube Oil for Large Two-Stroke Diesel Enginescitations
- 2019Mixed Flow Reactor Experiments and Modeling of Sulfuric Acid Neutralization in Lube Oil for Large Two-Stroke Diesel Enginescitations
- 2019Exposure of hydrocarbon intumescent coatings to the UL1709 heating curve and furnace rheology: Effects of zinc borate on char propertiescitations
- 2019Measurements of methanol permeation rates across thermoset organic coatings
- 2017Reaction of Sulfuric Acid in Lube Oil: Implications for Large Two-Stroke Diesel Enginescitations
- 2017Acid-resistant organic coatings for the chemical industry: a reviewcitations
- 2017Industrial Coatings at Extreme Conditions
- 2016Long-Term Stability of PEG-Based Antifouling Surfaces in a Marine Environment
- 2016Amphiphilic copolymers for fouling-release coatings
- 2015Quantitative analysis of silica aerogel-based thermal insulation coatingscitations
- 2015Use of Fillers, Pigments and Additives in Fouling-Release Coatings: a Literature Review
- 2013Mathematical modeling of photoinitiated coating degradation: Effects of coating glass transition temperature and light stabilizerscitations
- 2013Mathematical modeling of photoinitiated coating degradation: Effects of coating glass transition temperature and light stabilizerscitations
- 2012Microcapsule-based self-healing anticorrosive coatings: Capsule size, coating formulation, and exposure testingcitations
- 2011Teaching chemical product design to engineering students: course contents and challenges
- 2011Cinnamic Acid Derivatised Poly(Ethylene Glycol) as a Bioinspired UV-Adaptable Material
- 2011Synthesis of durable microcapsules for self-healing anticorrosive coatings: A comparison of selected methodscitations
- 2011UV-initierede ”smart materials”
- 2011Fremstilling af UV-aktive polymerer
- 2007Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetrycitations
- 2007Adhesion between coating layers based on epoxy and siliconecitations
- 2006Dissolution rate measurements of sea water soluble pigments for antifouling paintscitations
- 2005Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systemscitations
- 2005Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systemscitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Use of Fillers, Pigments and Additives in Fouling-Release Coatings: a Literature Review
Abstract
Polydimethylsiloxane (PDMS)-based fouling-release coatings represent a non-toxic alternative in the area of marine protection. Many researches and testing procedures are dedicated to the challenge of exploring of effective, reliable and high-performance constituents of the coatings ‒ fillers, pigments and additives ‒ in order to achieve the desired and long-lasting fouling-release properties.<br/>Primarily, coating formulations are prepared on the basis of PDMS with inorganic fillers such as fumed silica (SiO<sub>2</sub>), calcium carbonate (CaCO<sub>3</sub>), pigments ‒ titanium dioxide (TiO<sub>2</sub>), iron oxide (Fe<sub>2</sub>O<sub>3</sub>) or carbon black (C), and other additives (e.g., silicone oils) [1, 2].<br/>Silica and calcium carbonate can be used as agents to improve mechanical strength of the elastomeric material and provide superior thixotropic behavior to the coating formulations. Despite the fact that currently silica is more widespread in coating applications, calcium carbonate can also be competitive due to observed reduction of the surface modulus as a consequence of the dissolution under exposure to water [3]. Moreover, in many cases, calcium carbonate is added as extending filler in order to diminish expenses for silicone elastomers. As an additional option, pretreatment operations for silica can be considered as they ensure necessary hydrophilic/phobic properties alongside with easy dispersion in the PDMS matrix and lower moisture content. However, in this case, impaired reinforcement is observed [2].<br/>One of the challenges in this field is to determine the right filler loading value. In case of a high filler content, the crucial fouling-release characteristics tend to deteriorate due to lower intrinsic hydrophobicity of the PDMS matrix, despite the fact that the tensile strength and toughness are on the suitable level [1]. This result is obtained without dependence on type of the filler [3]. It also should be mentioned, that several recent researches opened promising perspectives of embedding of natural sepiolite nanofibers (Mg<sub>4</sub>Si<sub>6</sub>O<sub>15</sub>(OH)<sub>2</sub>·6H<sub>2</sub>O), single- or multi-walled carbon nanotubes (CWNTs and MWCNTs), modified graphite and graphene as fillers to maintain durability alongside with simultaneous fouling-release performance [1]. The explanation lies in the fact that addition of MWCNTs in low amounts helps to improve the properties mentioned above because of energetically favorable CH-π interactions between methyl groups of the PDMS and aromatic rings of the MWCNTs [5]. One of the major advantages of utilization of nano-structured fillers is that the particles are capable of providing significant interface area (by means of modifying the topography of the base) for interactions with the polymer matrix. This phenomenon gives an opportunity of potential enhancement of the mechanical strength without negative influence on the fouling-release properties. Another benefit of the nanoparticles is in altering of wetting abilities with forming self-cleaning or superhydrophobic surfaces [5]. Effect of the filler presence was tested by pseudobarnacles adhesion in order to estimate the tensile strength and fouling-release characteristics. It was discovered that the higher content of filler was, the greater pseudobarnacles adhesion strength and the lower fouling-release performance [1–3, 6].<br/>As it is well known, besides giving color and opacity, pigments also influence mechanical (tensile strength, abrasion resistance, elastic modulus, tear energy) and adhesion properties in condensation-cured PDMS-based coatings [2]. In addition to this, pigments can enhance biofouling resistance. For instance, titanium dioxide possesses a capability of switching from hydrophobic to hydrophilic under UV-light exposure. The photocatalytic effect of TiO2 gives an advantage in keeping the coating<br/>surface clean via weakening of the adhesion forces between fouling species and the surface of the coating [7]. As a drawback, using pigments in some cases demands higher PDMS loading due to hindrance of the self-stratification effect of bringing the PDMS to the coating surface [6]. Normally, in order to estimate the influence of pigments, pull-off test is conducted revealing the adhesion strength of the coating on the underlying tie-coat [2].<br/>According to the conducted experiments, it was concluded that silicone oils used as additives provide outstanding fouling-release properties due to appropriate critical surface tension and molecular mobility alongside with interfacial slippage and friction [3]. The principle of action of this additive type is in gradual migration of the molecules to the interface and leaching phenomenon which leads to the detachment of marine organisms and plants by slipping [4]. In other words, the fouling species settle onto the oils instead of the coating surface with a consequent release of the additive into the seawater. Us...